This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for injresinj . (Contributed by Alexander van der Vekens, 31-Oct-2017) (Proof shortened by AV, 14-Feb-2021) (Revised by Thierry Arnoux, 23-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | injresinjlem | ⊢ ( ¬ 𝑌 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝑋 ∈ ( 0 ... 𝐾 ) ∧ 𝑌 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznelfzo | ⊢ ( ( 𝑌 ∈ ( 0 ... 𝐾 ) ∧ ¬ 𝑌 ∈ ( 1 ..^ 𝐾 ) ) → ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) ) | |
| 2 | fvinim0ffz | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ↔ ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) ) | |
| 3 | df-nel | ⊢ ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ¬ ( 𝐹 ‘ 0 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) | |
| 4 | fveq2 | ⊢ ( 0 = 𝑌 → ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 𝑌 ) ) | |
| 5 | 4 | eqcoms | ⊢ ( 𝑌 = 0 → ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 6 | 5 | eleq1d | ⊢ ( 𝑌 = 0 → ( ( 𝐹 ‘ 0 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ( 𝐹 ‘ 𝑌 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
| 7 | 6 | notbid | ⊢ ( 𝑌 = 0 → ( ¬ ( 𝐹 ‘ 0 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ¬ ( 𝐹 ‘ 𝑌 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
| 8 | 7 | biimpd | ⊢ ( 𝑌 = 0 → ( ¬ ( 𝐹 ‘ 0 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) → ¬ ( 𝐹 ‘ 𝑌 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
| 9 | ffn | ⊢ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 → 𝐹 Fn ( 0 ... 𝐾 ) ) | |
| 10 | 1eluzge0 | ⊢ 1 ∈ ( ℤ≥ ‘ 0 ) | |
| 11 | fzoss1 | ⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → ( 1 ..^ 𝐾 ) ⊆ ( 0 ..^ 𝐾 ) ) | |
| 12 | 10 11 | mp1i | ⊢ ( 𝐾 ∈ ℕ0 → ( 1 ..^ 𝐾 ) ⊆ ( 0 ..^ 𝐾 ) ) |
| 13 | fzossfz | ⊢ ( 0 ..^ 𝐾 ) ⊆ ( 0 ... 𝐾 ) | |
| 14 | 12 13 | sstrdi | ⊢ ( 𝐾 ∈ ℕ0 → ( 1 ..^ 𝐾 ) ⊆ ( 0 ... 𝐾 ) ) |
| 15 | fvelimab | ⊢ ( ( 𝐹 Fn ( 0 ... 𝐾 ) ∧ ( 1 ..^ 𝐾 ) ⊆ ( 0 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑌 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ∃ 𝑧 ∈ ( 1 ..^ 𝐾 ) ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) ) ) | |
| 16 | 9 14 15 | syl2an | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑌 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ∃ 𝑧 ∈ ( 1 ..^ 𝐾 ) ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) ) ) |
| 17 | 16 | notbid | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ¬ ( 𝐹 ‘ 𝑌 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ¬ ∃ 𝑧 ∈ ( 1 ..^ 𝐾 ) ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) ) ) |
| 18 | ralnex | ⊢ ( ∀ 𝑧 ∈ ( 1 ..^ 𝐾 ) ¬ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) ↔ ¬ ∃ 𝑧 ∈ ( 1 ..^ 𝐾 ) ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) ) | |
| 19 | fveqeq2 | ⊢ ( 𝑧 = 𝑋 → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) ) | |
| 20 | 19 | notbid | ⊢ ( 𝑧 = 𝑋 → ( ¬ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) ↔ ¬ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) ) |
| 21 | 20 | rspcva | ⊢ ( ( 𝑋 ∈ ( 1 ..^ 𝐾 ) ∧ ∀ 𝑧 ∈ ( 1 ..^ 𝐾 ) ¬ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) ) → ¬ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 22 | pm2.21 | ⊢ ( ¬ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) | |
| 23 | 22 | a1d | ⊢ ( ¬ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) |
| 24 | 23 | 2a1d | ⊢ ( ¬ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) |
| 25 | 21 24 | syl | ⊢ ( ( 𝑋 ∈ ( 1 ..^ 𝐾 ) ∧ ∀ 𝑧 ∈ ( 1 ..^ 𝐾 ) ¬ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) |
| 26 | 25 | expcom | ⊢ ( ∀ 𝑧 ∈ ( 1 ..^ 𝐾 ) ¬ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 27 | 26 | com24 | ⊢ ( ∀ 𝑧 ∈ ( 1 ..^ 𝐾 ) ¬ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 28 | 18 27 | sylbir | ⊢ ( ¬ ∃ 𝑧 ∈ ( 1 ..^ 𝐾 ) ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 29 | 28 | com12 | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ¬ ∃ 𝑧 ∈ ( 1 ..^ 𝐾 ) ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 30 | 17 29 | sylbid | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ¬ ( 𝐹 ‘ 𝑌 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 31 | 30 | com12 | ⊢ ( ¬ ( 𝐹 ‘ 𝑌 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 32 | 8 31 | syl6com | ⊢ ( ¬ ( 𝐹 ‘ 0 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) → ( 𝑌 = 0 → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 33 | 3 32 | sylbi | ⊢ ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) → ( 𝑌 = 0 → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) → ( 𝑌 = 0 → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 35 | 34 | com12 | ⊢ ( 𝑌 = 0 → ( ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 36 | df-nel | ⊢ ( ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ¬ ( 𝐹 ‘ 𝐾 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) | |
| 37 | fveq2 | ⊢ ( 𝐾 = 𝑌 → ( 𝐹 ‘ 𝐾 ) = ( 𝐹 ‘ 𝑌 ) ) | |
| 38 | 37 | eqcoms | ⊢ ( 𝑌 = 𝐾 → ( 𝐹 ‘ 𝐾 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 39 | 38 | eleq1d | ⊢ ( 𝑌 = 𝐾 → ( ( 𝐹 ‘ 𝐾 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ( 𝐹 ‘ 𝑌 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
| 40 | 39 | notbid | ⊢ ( 𝑌 = 𝐾 → ( ¬ ( 𝐹 ‘ 𝐾 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ¬ ( 𝐹 ‘ 𝑌 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
| 41 | 40 | biimpd | ⊢ ( 𝑌 = 𝐾 → ( ¬ ( 𝐹 ‘ 𝐾 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) → ¬ ( 𝐹 ‘ 𝑌 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
| 42 | 41 31 | syl6com | ⊢ ( ¬ ( 𝐹 ‘ 𝐾 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) → ( 𝑌 = 𝐾 → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 43 | 36 42 | sylbi | ⊢ ( ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) → ( 𝑌 = 𝐾 → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 44 | 43 | adantl | ⊢ ( ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) → ( 𝑌 = 𝐾 → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 45 | 44 | com12 | ⊢ ( 𝑌 = 𝐾 → ( ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 46 | 35 45 | jaoi | ⊢ ( ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) → ( ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 47 | 46 | com13 | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) → ( ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 48 | 2 47 | sylbid | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 49 | 48 | com14 | ⊢ ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 50 | 49 | com12 | ⊢ ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 51 | 50 | com15 | ⊢ ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 52 | elfznelfzo | ⊢ ( ( 𝑋 ∈ ( 0 ... 𝐾 ) ∧ ¬ 𝑋 ∈ ( 1 ..^ 𝐾 ) ) → ( 𝑋 = 0 ∨ 𝑋 = 𝐾 ) ) | |
| 53 | eqtr3 | ⊢ ( ( 𝑋 = 0 ∧ 𝑌 = 0 ) → 𝑋 = 𝑌 ) | |
| 54 | 2a1 | ⊢ ( 𝑋 = 𝑌 → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) | |
| 55 | 54 | 2a1d | ⊢ ( 𝑋 = 𝑌 → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) |
| 56 | 53 55 | syl | ⊢ ( ( 𝑋 = 0 ∧ 𝑌 = 0 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) |
| 57 | 5 | adantl | ⊢ ( ( 𝑋 = 𝐾 ∧ 𝑌 = 0 ) → ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 58 | fveq2 | ⊢ ( 𝐾 = 𝑋 → ( 𝐹 ‘ 𝐾 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 59 | 58 | eqcoms | ⊢ ( 𝑋 = 𝐾 → ( 𝐹 ‘ 𝐾 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 60 | 59 | adantr | ⊢ ( ( 𝑋 = 𝐾 ∧ 𝑌 = 0 ) → ( 𝐹 ‘ 𝐾 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 61 | 57 60 | neeq12d | ⊢ ( ( 𝑋 = 𝐾 ∧ 𝑌 = 0 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) ↔ ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 62 | df-ne | ⊢ ( ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) ↔ ¬ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 63 | pm2.24 | ⊢ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → ( ¬ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑌 ) ) | |
| 64 | 63 | eqcoms | ⊢ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → ( ¬ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑌 ) ) |
| 65 | 64 | com12 | ⊢ ( ¬ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) |
| 66 | 62 65 | sylbi | ⊢ ( ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) |
| 67 | 61 66 | biimtrdi | ⊢ ( ( 𝑋 = 𝐾 ∧ 𝑌 = 0 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) |
| 68 | 67 | 2a1d | ⊢ ( ( 𝑋 = 𝐾 ∧ 𝑌 = 0 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) |
| 69 | fveq2 | ⊢ ( 0 = 𝑋 → ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 70 | 69 | eqcoms | ⊢ ( 𝑋 = 0 → ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 71 | 70 | adantr | ⊢ ( ( 𝑋 = 0 ∧ 𝑌 = 𝐾 ) → ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 72 | 38 | adantl | ⊢ ( ( 𝑋 = 0 ∧ 𝑌 = 𝐾 ) → ( 𝐹 ‘ 𝐾 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 73 | 71 72 | neeq12d | ⊢ ( ( 𝑋 = 0 ∧ 𝑌 = 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) |
| 74 | df-ne | ⊢ ( ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ↔ ¬ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) | |
| 75 | 74 22 | sylbi | ⊢ ( ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) |
| 76 | 73 75 | biimtrdi | ⊢ ( ( 𝑋 = 0 ∧ 𝑌 = 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) |
| 77 | 76 | 2a1d | ⊢ ( ( 𝑋 = 0 ∧ 𝑌 = 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) |
| 78 | eqtr3 | ⊢ ( ( 𝑋 = 𝐾 ∧ 𝑌 = 𝐾 ) → 𝑋 = 𝑌 ) | |
| 79 | 78 55 | syl | ⊢ ( ( 𝑋 = 𝐾 ∧ 𝑌 = 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) |
| 80 | 56 68 77 79 | ccase | ⊢ ( ( ( 𝑋 = 0 ∨ 𝑋 = 𝐾 ) ∧ ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) |
| 81 | 80 | ex | ⊢ ( ( 𝑋 = 0 ∨ 𝑋 = 𝐾 ) → ( ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 82 | 52 81 | syl | ⊢ ( ( 𝑋 ∈ ( 0 ... 𝐾 ) ∧ ¬ 𝑋 ∈ ( 1 ..^ 𝐾 ) ) → ( ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 83 | 82 | expcom | ⊢ ( ¬ 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 84 | 51 83 | pm2.61i | ⊢ ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 85 | 84 | com12 | ⊢ ( ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 86 | 1 85 | syl | ⊢ ( ( 𝑌 ∈ ( 0 ... 𝐾 ) ∧ ¬ 𝑌 ∈ ( 1 ..^ 𝐾 ) ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 87 | 86 | ex | ⊢ ( 𝑌 ∈ ( 0 ... 𝐾 ) → ( ¬ 𝑌 ∈ ( 1 ..^ 𝐾 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 88 | 87 | com23 | ⊢ ( 𝑌 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ¬ 𝑌 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 89 | 88 | impcom | ⊢ ( ( 𝑋 ∈ ( 0 ... 𝐾 ) ∧ 𝑌 ∈ ( 0 ... 𝐾 ) ) → ( ¬ 𝑌 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 90 | 89 | com12 | ⊢ ( ¬ 𝑌 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝑋 ∈ ( 0 ... 𝐾 ) ∧ 𝑌 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 91 | 90 | com25 | ⊢ ( ¬ 𝑌 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝑋 ∈ ( 0 ... 𝐾 ) ∧ 𝑌 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |