This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function values for the borders of a finite interval of integers, which is the domain of the function, are not in the image of the interior of the interval iff the intersection of the images of the interior and the borders is empty. (Contributed by Alexander van der Vekens, 31-Oct-2017) (Revised by AV, 5-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvinim0ffz | |- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) <-> ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn | |- ( F : ( 0 ... K ) --> V -> F Fn ( 0 ... K ) ) |
|
| 2 | 1 | adantr | |- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> F Fn ( 0 ... K ) ) |
| 3 | 0nn0 | |- 0 e. NN0 |
|
| 4 | 3 | a1i | |- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> 0 e. NN0 ) |
| 5 | simpr | |- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> K e. NN0 ) |
|
| 6 | nn0ge0 | |- ( K e. NN0 -> 0 <_ K ) |
|
| 7 | 6 | adantl | |- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> 0 <_ K ) |
| 8 | elfz2nn0 | |- ( 0 e. ( 0 ... K ) <-> ( 0 e. NN0 /\ K e. NN0 /\ 0 <_ K ) ) |
|
| 9 | 4 5 7 8 | syl3anbrc | |- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> 0 e. ( 0 ... K ) ) |
| 10 | id | |- ( K e. NN0 -> K e. NN0 ) |
|
| 11 | nn0re | |- ( K e. NN0 -> K e. RR ) |
|
| 12 | 11 | leidd | |- ( K e. NN0 -> K <_ K ) |
| 13 | elfz2nn0 | |- ( K e. ( 0 ... K ) <-> ( K e. NN0 /\ K e. NN0 /\ K <_ K ) ) |
|
| 14 | 10 10 12 13 | syl3anbrc | |- ( K e. NN0 -> K e. ( 0 ... K ) ) |
| 15 | 14 | adantl | |- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> K e. ( 0 ... K ) ) |
| 16 | fnimapr | |- ( ( F Fn ( 0 ... K ) /\ 0 e. ( 0 ... K ) /\ K e. ( 0 ... K ) ) -> ( F " { 0 , K } ) = { ( F ` 0 ) , ( F ` K ) } ) |
|
| 17 | 2 9 15 16 | syl3anc | |- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( F " { 0 , K } ) = { ( F ` 0 ) , ( F ` K ) } ) |
| 18 | 17 | ineq1d | |- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = ( { ( F ` 0 ) , ( F ` K ) } i^i ( F " ( 1 ..^ K ) ) ) ) |
| 19 | 18 | eqeq1d | |- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) <-> ( { ( F ` 0 ) , ( F ` K ) } i^i ( F " ( 1 ..^ K ) ) ) = (/) ) ) |
| 20 | disj | |- ( ( { ( F ` 0 ) , ( F ` K ) } i^i ( F " ( 1 ..^ K ) ) ) = (/) <-> A. v e. { ( F ` 0 ) , ( F ` K ) } -. v e. ( F " ( 1 ..^ K ) ) ) |
|
| 21 | fvex | |- ( F ` 0 ) e. _V |
|
| 22 | fvex | |- ( F ` K ) e. _V |
|
| 23 | eleq1 | |- ( v = ( F ` 0 ) -> ( v e. ( F " ( 1 ..^ K ) ) <-> ( F ` 0 ) e. ( F " ( 1 ..^ K ) ) ) ) |
|
| 24 | 23 | notbid | |- ( v = ( F ` 0 ) -> ( -. v e. ( F " ( 1 ..^ K ) ) <-> -. ( F ` 0 ) e. ( F " ( 1 ..^ K ) ) ) ) |
| 25 | df-nel | |- ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) <-> -. ( F ` 0 ) e. ( F " ( 1 ..^ K ) ) ) |
|
| 26 | 24 25 | bitr4di | |- ( v = ( F ` 0 ) -> ( -. v e. ( F " ( 1 ..^ K ) ) <-> ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) ) ) |
| 27 | eleq1 | |- ( v = ( F ` K ) -> ( v e. ( F " ( 1 ..^ K ) ) <-> ( F ` K ) e. ( F " ( 1 ..^ K ) ) ) ) |
|
| 28 | 27 | notbid | |- ( v = ( F ` K ) -> ( -. v e. ( F " ( 1 ..^ K ) ) <-> -. ( F ` K ) e. ( F " ( 1 ..^ K ) ) ) ) |
| 29 | df-nel | |- ( ( F ` K ) e/ ( F " ( 1 ..^ K ) ) <-> -. ( F ` K ) e. ( F " ( 1 ..^ K ) ) ) |
|
| 30 | 28 29 | bitr4di | |- ( v = ( F ` K ) -> ( -. v e. ( F " ( 1 ..^ K ) ) <-> ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) ) |
| 31 | 21 22 26 30 | ralpr | |- ( A. v e. { ( F ` 0 ) , ( F ` K ) } -. v e. ( F " ( 1 ..^ K ) ) <-> ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) ) |
| 32 | 20 31 | bitri | |- ( ( { ( F ` 0 ) , ( F ` K ) } i^i ( F " ( 1 ..^ K ) ) ) = (/) <-> ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) ) |
| 33 | 19 32 | bitrdi | |- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) <-> ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) ) ) |