This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for funpartfun . Show membership in the restriction. (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funpartlem | ⊢ ( 𝐴 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ↔ ∃ 𝑥 ( 𝐹 “ { 𝐴 } ) = { 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) → 𝐴 ∈ V ) | |
| 2 | vsnid | ⊢ 𝑥 ∈ { 𝑥 } | |
| 3 | eleq2 | ⊢ ( ( 𝐹 “ { 𝐴 } ) = { 𝑥 } → ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ 𝑥 ∈ { 𝑥 } ) ) | |
| 4 | 2 3 | mpbiri | ⊢ ( ( 𝐹 “ { 𝐴 } ) = { 𝑥 } → 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) |
| 5 | n0i | ⊢ ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) → ¬ ( 𝐹 “ { 𝐴 } ) = ∅ ) | |
| 6 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 7 | 6 | biimpi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) |
| 8 | 7 | imaeq2d | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐹 “ { 𝐴 } ) = ( 𝐹 “ ∅ ) ) |
| 9 | ima0 | ⊢ ( 𝐹 “ ∅ ) = ∅ | |
| 10 | 8 9 | eqtrdi | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐹 “ { 𝐴 } ) = ∅ ) |
| 11 | 5 10 | nsyl2 | ⊢ ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) → 𝐴 ∈ V ) |
| 12 | 4 11 | syl | ⊢ ( ( 𝐹 “ { 𝐴 } ) = { 𝑥 } → 𝐴 ∈ V ) |
| 13 | 12 | exlimiv | ⊢ ( ∃ 𝑥 ( 𝐹 “ { 𝐴 } ) = { 𝑥 } → 𝐴 ∈ V ) |
| 14 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ↔ 𝐴 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) ) | |
| 15 | sneq | ⊢ ( 𝑦 = 𝐴 → { 𝑦 } = { 𝐴 } ) | |
| 16 | 15 | imaeq2d | ⊢ ( 𝑦 = 𝐴 → ( 𝐹 “ { 𝑦 } ) = ( 𝐹 “ { 𝐴 } ) ) |
| 17 | 16 | eqeq1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝐹 “ { 𝑦 } ) = { 𝑥 } ↔ ( 𝐹 “ { 𝐴 } ) = { 𝑥 } ) ) |
| 18 | 17 | exbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ( 𝐹 “ { 𝑦 } ) = { 𝑥 } ↔ ∃ 𝑥 ( 𝐹 “ { 𝐴 } ) = { 𝑥 } ) ) |
| 19 | vex | ⊢ 𝑦 ∈ V | |
| 20 | 19 | eldm | ⊢ ( 𝑦 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ↔ ∃ 𝑧 𝑦 ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) 𝑧 ) |
| 21 | brxp | ⊢ ( 𝑦 ( V × Singletons ) 𝑧 ↔ ( 𝑦 ∈ V ∧ 𝑧 ∈ Singletons ) ) | |
| 22 | 19 21 | mpbiran | ⊢ ( 𝑦 ( V × Singletons ) 𝑧 ↔ 𝑧 ∈ Singletons ) |
| 23 | elsingles | ⊢ ( 𝑧 ∈ Singletons ↔ ∃ 𝑥 𝑧 = { 𝑥 } ) | |
| 24 | 22 23 | bitri | ⊢ ( 𝑦 ( V × Singletons ) 𝑧 ↔ ∃ 𝑥 𝑧 = { 𝑥 } ) |
| 25 | 24 | anbi2i | ⊢ ( ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ 𝑦 ( V × Singletons ) 𝑧 ) ↔ ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ ∃ 𝑥 𝑧 = { 𝑥 } ) ) |
| 26 | brin | ⊢ ( 𝑦 ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) 𝑧 ↔ ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ 𝑦 ( V × Singletons ) 𝑧 ) ) | |
| 27 | 19.42v | ⊢ ( ∃ 𝑥 ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ 𝑧 = { 𝑥 } ) ↔ ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ ∃ 𝑥 𝑧 = { 𝑥 } ) ) | |
| 28 | 25 26 27 | 3bitr4i | ⊢ ( 𝑦 ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) 𝑧 ↔ ∃ 𝑥 ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ 𝑧 = { 𝑥 } ) ) |
| 29 | 28 | exbii | ⊢ ( ∃ 𝑧 𝑦 ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) 𝑧 ↔ ∃ 𝑧 ∃ 𝑥 ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ 𝑧 = { 𝑥 } ) ) |
| 30 | excom | ⊢ ( ∃ 𝑧 ∃ 𝑥 ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ 𝑧 = { 𝑥 } ) ↔ ∃ 𝑥 ∃ 𝑧 ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ 𝑧 = { 𝑥 } ) ) | |
| 31 | 29 30 | bitri | ⊢ ( ∃ 𝑧 𝑦 ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) 𝑧 ↔ ∃ 𝑥 ∃ 𝑧 ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ 𝑧 = { 𝑥 } ) ) |
| 32 | exancom | ⊢ ( ∃ 𝑧 ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ 𝑧 = { 𝑥 } ) ↔ ∃ 𝑧 ( 𝑧 = { 𝑥 } ∧ 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ) ) | |
| 33 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 34 | breq2 | ⊢ ( 𝑧 = { 𝑥 } → ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ↔ 𝑦 ( Image 𝐹 ∘ Singleton ) { 𝑥 } ) ) | |
| 35 | 33 34 | ceqsexv | ⊢ ( ∃ 𝑧 ( 𝑧 = { 𝑥 } ∧ 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ) ↔ 𝑦 ( Image 𝐹 ∘ Singleton ) { 𝑥 } ) |
| 36 | 19 33 | brco | ⊢ ( 𝑦 ( Image 𝐹 ∘ Singleton ) { 𝑥 } ↔ ∃ 𝑧 ( 𝑦 Singleton 𝑧 ∧ 𝑧 Image 𝐹 { 𝑥 } ) ) |
| 37 | vex | ⊢ 𝑧 ∈ V | |
| 38 | 19 37 | brsingle | ⊢ ( 𝑦 Singleton 𝑧 ↔ 𝑧 = { 𝑦 } ) |
| 39 | 38 | anbi1i | ⊢ ( ( 𝑦 Singleton 𝑧 ∧ 𝑧 Image 𝐹 { 𝑥 } ) ↔ ( 𝑧 = { 𝑦 } ∧ 𝑧 Image 𝐹 { 𝑥 } ) ) |
| 40 | 39 | exbii | ⊢ ( ∃ 𝑧 ( 𝑦 Singleton 𝑧 ∧ 𝑧 Image 𝐹 { 𝑥 } ) ↔ ∃ 𝑧 ( 𝑧 = { 𝑦 } ∧ 𝑧 Image 𝐹 { 𝑥 } ) ) |
| 41 | vsnex | ⊢ { 𝑦 } ∈ V | |
| 42 | breq1 | ⊢ ( 𝑧 = { 𝑦 } → ( 𝑧 Image 𝐹 { 𝑥 } ↔ { 𝑦 } Image 𝐹 { 𝑥 } ) ) | |
| 43 | 41 42 | ceqsexv | ⊢ ( ∃ 𝑧 ( 𝑧 = { 𝑦 } ∧ 𝑧 Image 𝐹 { 𝑥 } ) ↔ { 𝑦 } Image 𝐹 { 𝑥 } ) |
| 44 | 41 33 | brimage | ⊢ ( { 𝑦 } Image 𝐹 { 𝑥 } ↔ { 𝑥 } = ( 𝐹 “ { 𝑦 } ) ) |
| 45 | eqcom | ⊢ ( { 𝑥 } = ( 𝐹 “ { 𝑦 } ) ↔ ( 𝐹 “ { 𝑦 } ) = { 𝑥 } ) | |
| 46 | 43 44 45 | 3bitri | ⊢ ( ∃ 𝑧 ( 𝑧 = { 𝑦 } ∧ 𝑧 Image 𝐹 { 𝑥 } ) ↔ ( 𝐹 “ { 𝑦 } ) = { 𝑥 } ) |
| 47 | 36 40 46 | 3bitri | ⊢ ( 𝑦 ( Image 𝐹 ∘ Singleton ) { 𝑥 } ↔ ( 𝐹 “ { 𝑦 } ) = { 𝑥 } ) |
| 48 | 32 35 47 | 3bitri | ⊢ ( ∃ 𝑧 ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ 𝑧 = { 𝑥 } ) ↔ ( 𝐹 “ { 𝑦 } ) = { 𝑥 } ) |
| 49 | 48 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑧 ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ 𝑧 = { 𝑥 } ) ↔ ∃ 𝑥 ( 𝐹 “ { 𝑦 } ) = { 𝑥 } ) |
| 50 | 20 31 49 | 3bitri | ⊢ ( 𝑦 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ↔ ∃ 𝑥 ( 𝐹 “ { 𝑦 } ) = { 𝑥 } ) |
| 51 | 14 18 50 | vtoclbg | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ↔ ∃ 𝑥 ( 𝐹 “ { 𝐴 } ) = { 𝑥 } ) ) |
| 52 | 1 13 51 | pm5.21nii | ⊢ ( 𝐴 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ↔ ∃ 𝑥 ( 𝐹 “ { 𝐴 } ) = { 𝑥 } ) |