This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elsingles | ⊢ ( 𝐴 ∈ Singletons ↔ ∃ 𝑥 𝐴 = { 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ Singletons → 𝐴 ∈ V ) | |
| 2 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 3 | eleq1 | ⊢ ( 𝐴 = { 𝑥 } → ( 𝐴 ∈ V ↔ { 𝑥 } ∈ V ) ) | |
| 4 | 2 3 | mpbiri | ⊢ ( 𝐴 = { 𝑥 } → 𝐴 ∈ V ) |
| 5 | 4 | exlimiv | ⊢ ( ∃ 𝑥 𝐴 = { 𝑥 } → 𝐴 ∈ V ) |
| 6 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ Singletons ↔ 𝐴 ∈ Singletons ) ) | |
| 7 | eqeq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 = { 𝑥 } ↔ 𝐴 = { 𝑥 } ) ) | |
| 8 | 7 | exbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 𝑦 = { 𝑥 } ↔ ∃ 𝑥 𝐴 = { 𝑥 } ) ) |
| 9 | df-singles | ⊢ Singletons = ran Singleton | |
| 10 | 9 | eleq2i | ⊢ ( 𝑦 ∈ Singletons ↔ 𝑦 ∈ ran Singleton ) |
| 11 | vex | ⊢ 𝑦 ∈ V | |
| 12 | 11 | elrn | ⊢ ( 𝑦 ∈ ran Singleton ↔ ∃ 𝑥 𝑥 Singleton 𝑦 ) |
| 13 | vex | ⊢ 𝑥 ∈ V | |
| 14 | 13 11 | brsingle | ⊢ ( 𝑥 Singleton 𝑦 ↔ 𝑦 = { 𝑥 } ) |
| 15 | 14 | exbii | ⊢ ( ∃ 𝑥 𝑥 Singleton 𝑦 ↔ ∃ 𝑥 𝑦 = { 𝑥 } ) |
| 16 | 10 12 15 | 3bitri | ⊢ ( 𝑦 ∈ Singletons ↔ ∃ 𝑥 𝑦 = { 𝑥 } ) |
| 17 | 6 8 16 | vtoclbg | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ Singletons ↔ ∃ 𝑥 𝐴 = { 𝑥 } ) ) |
| 18 | 1 5 17 | pm5.21nii | ⊢ ( 𝐴 ∈ Singletons ↔ ∃ 𝑥 𝐴 = { 𝑥 } ) |