This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation form of the Image functor. (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brimage.1 | ⊢ 𝐴 ∈ V | |
| brimage.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | brimage | ⊢ ( 𝐴 Image 𝑅 𝐵 ↔ 𝐵 = ( 𝑅 “ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brimage.1 | ⊢ 𝐴 ∈ V | |
| 2 | brimage.2 | ⊢ 𝐵 ∈ V | |
| 3 | df-image | ⊢ Image 𝑅 = ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ ◡ 𝑅 ) ⊗ V ) ) ) | |
| 4 | brxp | ⊢ ( 𝐴 ( V × V ) 𝐵 ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) | |
| 5 | 1 2 4 | mpbir2an | ⊢ 𝐴 ( V × V ) 𝐵 |
| 6 | vex | ⊢ 𝑥 ∈ V | |
| 7 | vex | ⊢ 𝑦 ∈ V | |
| 8 | 6 7 | brcnv | ⊢ ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) |
| 9 | 8 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝐴 𝑥 ◡ 𝑅 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 𝑦 𝑅 𝑥 ) |
| 10 | 6 1 | coep | ⊢ ( 𝑥 ( E ∘ ◡ 𝑅 ) 𝐴 ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ◡ 𝑅 𝑦 ) |
| 11 | 6 | elima | ⊢ ( 𝑥 ∈ ( 𝑅 “ 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐴 𝑦 𝑅 𝑥 ) |
| 12 | 9 10 11 | 3bitr4ri | ⊢ ( 𝑥 ∈ ( 𝑅 “ 𝐴 ) ↔ 𝑥 ( E ∘ ◡ 𝑅 ) 𝐴 ) |
| 13 | 1 2 3 5 12 | brtxpsd3 | ⊢ ( 𝐴 Image 𝑅 𝐵 ↔ 𝐵 = ( 𝑅 “ 𝐴 ) ) |