This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The functional part of F is a function. (Contributed by Scott Fenton, 16-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funpartfun | ⊢ Fun Funpart 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | ⊢ Rel ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) | |
| 2 | vex | ⊢ 𝑧 ∈ V | |
| 3 | 2 | brresi | ⊢ ( 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑧 ↔ ( 𝑥 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ∧ 𝑥 𝐹 𝑧 ) ) |
| 4 | 3 | simprbi | ⊢ ( 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑧 → 𝑥 𝐹 𝑧 ) |
| 5 | vex | ⊢ 𝑦 ∈ V | |
| 6 | 5 | brresi | ⊢ ( 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑦 ↔ ( 𝑥 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ∧ 𝑥 𝐹 𝑦 ) ) |
| 7 | funpartlem | ⊢ ( 𝑥 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ↔ ∃ 𝑤 ( 𝐹 “ { 𝑥 } ) = { 𝑤 } ) | |
| 8 | 7 | anbi1i | ⊢ ( ( 𝑥 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ∧ 𝑥 𝐹 𝑦 ) ↔ ( ∃ 𝑤 ( 𝐹 “ { 𝑥 } ) = { 𝑤 } ∧ 𝑥 𝐹 𝑦 ) ) |
| 9 | 6 8 | bitri | ⊢ ( 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑦 ↔ ( ∃ 𝑤 ( 𝐹 “ { 𝑥 } ) = { 𝑤 } ∧ 𝑥 𝐹 𝑦 ) ) |
| 10 | df-br | ⊢ ( 𝑥 𝐹 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) | |
| 11 | df-br | ⊢ ( 𝑥 𝐹 𝑧 ↔ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) | |
| 12 | 10 11 | anbi12i | ⊢ ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) ) |
| 13 | vex | ⊢ 𝑥 ∈ V | |
| 14 | 13 5 | elimasn | ⊢ ( 𝑦 ∈ ( 𝐹 “ { 𝑥 } ) ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) |
| 15 | 13 2 | elimasn | ⊢ ( 𝑧 ∈ ( 𝐹 “ { 𝑥 } ) ↔ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) |
| 16 | 14 15 | anbi12i | ⊢ ( ( 𝑦 ∈ ( 𝐹 “ { 𝑥 } ) ∧ 𝑧 ∈ ( 𝐹 “ { 𝑥 } ) ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) ) |
| 17 | 12 16 | bitr4i | ⊢ ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) ↔ ( 𝑦 ∈ ( 𝐹 “ { 𝑥 } ) ∧ 𝑧 ∈ ( 𝐹 “ { 𝑥 } ) ) ) |
| 18 | eleq2 | ⊢ ( ( 𝐹 “ { 𝑥 } ) = { 𝑤 } → ( 𝑦 ∈ ( 𝐹 “ { 𝑥 } ) ↔ 𝑦 ∈ { 𝑤 } ) ) | |
| 19 | eleq2 | ⊢ ( ( 𝐹 “ { 𝑥 } ) = { 𝑤 } → ( 𝑧 ∈ ( 𝐹 “ { 𝑥 } ) ↔ 𝑧 ∈ { 𝑤 } ) ) | |
| 20 | 18 19 | anbi12d | ⊢ ( ( 𝐹 “ { 𝑥 } ) = { 𝑤 } → ( ( 𝑦 ∈ ( 𝐹 “ { 𝑥 } ) ∧ 𝑧 ∈ ( 𝐹 “ { 𝑥 } ) ) ↔ ( 𝑦 ∈ { 𝑤 } ∧ 𝑧 ∈ { 𝑤 } ) ) ) |
| 21 | velsn | ⊢ ( 𝑦 ∈ { 𝑤 } ↔ 𝑦 = 𝑤 ) | |
| 22 | velsn | ⊢ ( 𝑧 ∈ { 𝑤 } ↔ 𝑧 = 𝑤 ) | |
| 23 | equtr2 | ⊢ ( ( 𝑦 = 𝑤 ∧ 𝑧 = 𝑤 ) → 𝑦 = 𝑧 ) | |
| 24 | 21 22 23 | syl2anb | ⊢ ( ( 𝑦 ∈ { 𝑤 } ∧ 𝑧 ∈ { 𝑤 } ) → 𝑦 = 𝑧 ) |
| 25 | 20 24 | biimtrdi | ⊢ ( ( 𝐹 “ { 𝑥 } ) = { 𝑤 } → ( ( 𝑦 ∈ ( 𝐹 “ { 𝑥 } ) ∧ 𝑧 ∈ ( 𝐹 “ { 𝑥 } ) ) → 𝑦 = 𝑧 ) ) |
| 26 | 17 25 | biimtrid | ⊢ ( ( 𝐹 “ { 𝑥 } ) = { 𝑤 } → ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 27 | 26 | exlimiv | ⊢ ( ∃ 𝑤 ( 𝐹 “ { 𝑥 } ) = { 𝑤 } → ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 28 | 27 | impl | ⊢ ( ( ( ∃ 𝑤 ( 𝐹 “ { 𝑥 } ) = { 𝑤 } ∧ 𝑥 𝐹 𝑦 ) ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) |
| 29 | 9 28 | sylanb | ⊢ ( ( 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) |
| 30 | 4 29 | sylan2 | ⊢ ( ( 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑦 ∧ 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑧 ) → 𝑦 = 𝑧 ) |
| 31 | 30 | gen2 | ⊢ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑦 ∧ 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑧 ) → 𝑦 = 𝑧 ) |
| 32 | 31 | ax-gen | ⊢ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑦 ∧ 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑧 ) → 𝑦 = 𝑧 ) |
| 33 | df-funpart | ⊢ Funpart 𝐹 = ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) | |
| 34 | 33 | funeqi | ⊢ ( Fun Funpart 𝐹 ↔ Fun ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) ) |
| 35 | dffun2 | ⊢ ( Fun ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) ↔ ( Rel ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑦 ∧ 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑧 ) → 𝑦 = 𝑧 ) ) ) | |
| 36 | 34 35 | bitri | ⊢ ( Fun Funpart 𝐹 ↔ ( Rel ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑦 ∧ 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
| 37 | 1 32 36 | mpbir2an | ⊢ Fun Funpart 𝐹 |