This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for funpartfun . Show membership in the restriction. (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funpartlem | |- ( A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E. x ( F " { A } ) = { x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) -> A e. _V ) |
|
| 2 | vsnid | |- x e. { x } |
|
| 3 | eleq2 | |- ( ( F " { A } ) = { x } -> ( x e. ( F " { A } ) <-> x e. { x } ) ) |
|
| 4 | 2 3 | mpbiri | |- ( ( F " { A } ) = { x } -> x e. ( F " { A } ) ) |
| 5 | n0i | |- ( x e. ( F " { A } ) -> -. ( F " { A } ) = (/) ) |
|
| 6 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
| 7 | 6 | biimpi | |- ( -. A e. _V -> { A } = (/) ) |
| 8 | 7 | imaeq2d | |- ( -. A e. _V -> ( F " { A } ) = ( F " (/) ) ) |
| 9 | ima0 | |- ( F " (/) ) = (/) |
|
| 10 | 8 9 | eqtrdi | |- ( -. A e. _V -> ( F " { A } ) = (/) ) |
| 11 | 5 10 | nsyl2 | |- ( x e. ( F " { A } ) -> A e. _V ) |
| 12 | 4 11 | syl | |- ( ( F " { A } ) = { x } -> A e. _V ) |
| 13 | 12 | exlimiv | |- ( E. x ( F " { A } ) = { x } -> A e. _V ) |
| 14 | eleq1 | |- ( y = A -> ( y e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) ) |
|
| 15 | sneq | |- ( y = A -> { y } = { A } ) |
|
| 16 | 15 | imaeq2d | |- ( y = A -> ( F " { y } ) = ( F " { A } ) ) |
| 17 | 16 | eqeq1d | |- ( y = A -> ( ( F " { y } ) = { x } <-> ( F " { A } ) = { x } ) ) |
| 18 | 17 | exbidv | |- ( y = A -> ( E. x ( F " { y } ) = { x } <-> E. x ( F " { A } ) = { x } ) ) |
| 19 | vex | |- y e. _V |
|
| 20 | 19 | eldm | |- ( y e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E. z y ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) z ) |
| 21 | brxp | |- ( y ( _V X. Singletons ) z <-> ( y e. _V /\ z e. Singletons ) ) |
|
| 22 | 19 21 | mpbiran | |- ( y ( _V X. Singletons ) z <-> z e. Singletons ) |
| 23 | elsingles | |- ( z e. Singletons <-> E. x z = { x } ) |
|
| 24 | 22 23 | bitri | |- ( y ( _V X. Singletons ) z <-> E. x z = { x } ) |
| 25 | 24 | anbi2i | |- ( ( y ( Image F o. Singleton ) z /\ y ( _V X. Singletons ) z ) <-> ( y ( Image F o. Singleton ) z /\ E. x z = { x } ) ) |
| 26 | brin | |- ( y ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) z <-> ( y ( Image F o. Singleton ) z /\ y ( _V X. Singletons ) z ) ) |
|
| 27 | 19.42v | |- ( E. x ( y ( Image F o. Singleton ) z /\ z = { x } ) <-> ( y ( Image F o. Singleton ) z /\ E. x z = { x } ) ) |
|
| 28 | 25 26 27 | 3bitr4i | |- ( y ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) z <-> E. x ( y ( Image F o. Singleton ) z /\ z = { x } ) ) |
| 29 | 28 | exbii | |- ( E. z y ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) z <-> E. z E. x ( y ( Image F o. Singleton ) z /\ z = { x } ) ) |
| 30 | excom | |- ( E. z E. x ( y ( Image F o. Singleton ) z /\ z = { x } ) <-> E. x E. z ( y ( Image F o. Singleton ) z /\ z = { x } ) ) |
|
| 31 | 29 30 | bitri | |- ( E. z y ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) z <-> E. x E. z ( y ( Image F o. Singleton ) z /\ z = { x } ) ) |
| 32 | exancom | |- ( E. z ( y ( Image F o. Singleton ) z /\ z = { x } ) <-> E. z ( z = { x } /\ y ( Image F o. Singleton ) z ) ) |
|
| 33 | vsnex | |- { x } e. _V |
|
| 34 | breq2 | |- ( z = { x } -> ( y ( Image F o. Singleton ) z <-> y ( Image F o. Singleton ) { x } ) ) |
|
| 35 | 33 34 | ceqsexv | |- ( E. z ( z = { x } /\ y ( Image F o. Singleton ) z ) <-> y ( Image F o. Singleton ) { x } ) |
| 36 | 19 33 | brco | |- ( y ( Image F o. Singleton ) { x } <-> E. z ( y Singleton z /\ z Image F { x } ) ) |
| 37 | vex | |- z e. _V |
|
| 38 | 19 37 | brsingle | |- ( y Singleton z <-> z = { y } ) |
| 39 | 38 | anbi1i | |- ( ( y Singleton z /\ z Image F { x } ) <-> ( z = { y } /\ z Image F { x } ) ) |
| 40 | 39 | exbii | |- ( E. z ( y Singleton z /\ z Image F { x } ) <-> E. z ( z = { y } /\ z Image F { x } ) ) |
| 41 | vsnex | |- { y } e. _V |
|
| 42 | breq1 | |- ( z = { y } -> ( z Image F { x } <-> { y } Image F { x } ) ) |
|
| 43 | 41 42 | ceqsexv | |- ( E. z ( z = { y } /\ z Image F { x } ) <-> { y } Image F { x } ) |
| 44 | 41 33 | brimage | |- ( { y } Image F { x } <-> { x } = ( F " { y } ) ) |
| 45 | eqcom | |- ( { x } = ( F " { y } ) <-> ( F " { y } ) = { x } ) |
|
| 46 | 43 44 45 | 3bitri | |- ( E. z ( z = { y } /\ z Image F { x } ) <-> ( F " { y } ) = { x } ) |
| 47 | 36 40 46 | 3bitri | |- ( y ( Image F o. Singleton ) { x } <-> ( F " { y } ) = { x } ) |
| 48 | 32 35 47 | 3bitri | |- ( E. z ( y ( Image F o. Singleton ) z /\ z = { x } ) <-> ( F " { y } ) = { x } ) |
| 49 | 48 | exbii | |- ( E. x E. z ( y ( Image F o. Singleton ) z /\ z = { x } ) <-> E. x ( F " { y } ) = { x } ) |
| 50 | 20 31 49 | 3bitri | |- ( y e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E. x ( F " { y } ) = { x } ) |
| 51 | 14 18 50 | vtoclbg | |- ( A e. _V -> ( A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E. x ( F " { A } ) = { x } ) ) |
| 52 | 1 13 51 | pm5.21nii | |- ( A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E. x ( F " { A } ) = { x } ) |