This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brsingle.1 | ⊢ 𝐴 ∈ V | |
| brsingle.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | brsingle | ⊢ ( 𝐴 Singleton 𝐵 ↔ 𝐵 = { 𝐴 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsingle.1 | ⊢ 𝐴 ∈ V | |
| 2 | brsingle.2 | ⊢ 𝐵 ∈ V | |
| 3 | df-singleton | ⊢ Singleton = ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) ) | |
| 4 | brxp | ⊢ ( 𝐴 ( V × V ) 𝐵 ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) | |
| 5 | 1 2 4 | mpbir2an | ⊢ 𝐴 ( V × V ) 𝐵 |
| 6 | velsn | ⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) | |
| 7 | 1 | ideq | ⊢ ( 𝑥 I 𝐴 ↔ 𝑥 = 𝐴 ) |
| 8 | 6 7 | bitr4i | ⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 I 𝐴 ) |
| 9 | 1 2 3 5 8 | brtxpsd3 | ⊢ ( 𝐴 Singleton 𝐵 ↔ 𝐵 = { 𝐴 } ) |