This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 9 for funcestrcsetc . (Contributed by AV, 23-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcestrcsetc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| funcestrcsetc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | ||
| funcestrcsetc.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | ||
| funcestrcsetc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| funcestrcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| funcestrcsetc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | ||
| funcestrcsetc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) | ||
| Assertion | funcestrcsetclem9 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐸 ) 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 ( Hom ‘ 𝐸 ) 𝑍 ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐸 ) 𝑍 ) 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcestrcsetc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| 2 | funcestrcsetc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 3 | funcestrcsetc.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | |
| 4 | funcestrcsetc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 5 | funcestrcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 6 | funcestrcsetc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | |
| 7 | funcestrcsetc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) | |
| 8 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑈 ∈ WUni ) |
| 9 | eqid | ⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) | |
| 10 | 1 5 | estrcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐸 ) ) |
| 11 | 3 10 | eqtr4id | ⊢ ( 𝜑 → 𝐵 = 𝑈 ) |
| 12 | 11 | eleq2d | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ↔ 𝑋 ∈ 𝑈 ) ) |
| 13 | 12 | biimpcd | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝜑 → 𝑋 ∈ 𝑈 ) ) |
| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝜑 → 𝑋 ∈ 𝑈 ) ) |
| 15 | 14 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝑈 ) |
| 16 | 11 | eleq2d | ⊢ ( 𝜑 → ( 𝑌 ∈ 𝐵 ↔ 𝑌 ∈ 𝑈 ) ) |
| 17 | 16 | biimpcd | ⊢ ( 𝑌 ∈ 𝐵 → ( 𝜑 → 𝑌 ∈ 𝑈 ) ) |
| 18 | 17 | 3ad2ant2 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝜑 → 𝑌 ∈ 𝑈 ) ) |
| 19 | 18 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝑈 ) |
| 20 | eqid | ⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) | |
| 21 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 22 | 1 8 9 15 19 20 21 | estrchom | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ( Hom ‘ 𝐸 ) 𝑌 ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) |
| 23 | 22 | eleq2d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐸 ) 𝑌 ) ↔ 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) ) |
| 24 | 11 | eleq2d | ⊢ ( 𝜑 → ( 𝑍 ∈ 𝐵 ↔ 𝑍 ∈ 𝑈 ) ) |
| 25 | 24 | biimpcd | ⊢ ( 𝑍 ∈ 𝐵 → ( 𝜑 → 𝑍 ∈ 𝑈 ) ) |
| 26 | 25 | 3ad2ant3 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝜑 → 𝑍 ∈ 𝑈 ) ) |
| 27 | 26 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝑈 ) |
| 28 | eqid | ⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) | |
| 29 | 1 8 9 19 27 21 28 | estrchom | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 ( Hom ‘ 𝐸 ) 𝑍 ) = ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) |
| 30 | 29 | eleq2d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐾 ∈ ( 𝑌 ( Hom ‘ 𝐸 ) 𝑍 ) ↔ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) |
| 31 | 23 30 | anbi12d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐸 ) 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 ( Hom ‘ 𝐸 ) 𝑍 ) ) ↔ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) ) |
| 32 | elmapi | ⊢ ( 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) → 𝐾 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑍 ) ) | |
| 33 | elmapi | ⊢ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) → 𝐻 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) | |
| 34 | fco | ⊢ ( ( 𝐾 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑍 ) ∧ 𝐻 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) → ( 𝐾 ∘ 𝐻 ) : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑍 ) ) | |
| 35 | 32 33 34 | syl2an | ⊢ ( ( 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ∧ 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) → ( 𝐾 ∘ 𝐻 ) : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑍 ) ) |
| 36 | fvex | ⊢ ( Base ‘ 𝑍 ) ∈ V | |
| 37 | fvex | ⊢ ( Base ‘ 𝑋 ) ∈ V | |
| 38 | 36 37 | elmap | ⊢ ( ( 𝐾 ∘ 𝐻 ) ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑋 ) ) ↔ ( 𝐾 ∘ 𝐻 ) : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑍 ) ) |
| 39 | 35 38 | sylibr | ⊢ ( ( 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ∧ 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) → ( 𝐾 ∘ 𝐻 ) ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑋 ) ) ) |
| 40 | 39 | ancoms | ⊢ ( ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) → ( 𝐾 ∘ 𝐻 ) ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑋 ) ) ) |
| 41 | 40 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( 𝐾 ∘ 𝐻 ) ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑋 ) ) ) |
| 42 | fvresi | ⊢ ( ( 𝐾 ∘ 𝐻 ) ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑋 ) ) → ( ( I ↾ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑋 ) ) ) ‘ ( 𝐾 ∘ 𝐻 ) ) = ( 𝐾 ∘ 𝐻 ) ) | |
| 43 | 41 42 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( I ↾ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑋 ) ) ) ‘ ( 𝐾 ∘ 𝐻 ) ) = ( 𝐾 ∘ 𝐻 ) ) |
| 44 | 1 2 3 4 5 6 7 20 28 | funcestrcsetclem5 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐺 𝑍 ) = ( I ↾ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑋 ) ) ) ) |
| 45 | 44 | 3adantr2 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐺 𝑍 ) = ( I ↾ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑋 ) ) ) ) |
| 46 | 45 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( 𝑋 𝐺 𝑍 ) = ( I ↾ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑋 ) ) ) ) |
| 47 | 8 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → 𝑈 ∈ WUni ) |
| 48 | eqid | ⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) | |
| 49 | 15 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → 𝑋 ∈ 𝑈 ) |
| 50 | 19 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → 𝑌 ∈ 𝑈 ) |
| 51 | 27 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → 𝑍 ∈ 𝑈 ) |
| 52 | 33 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → 𝐻 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) |
| 53 | 32 | ad2antll | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → 𝐾 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑍 ) ) |
| 54 | 1 47 48 49 50 51 20 21 28 52 53 | estrcco | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐸 ) 𝑍 ) 𝐻 ) = ( 𝐾 ∘ 𝐻 ) ) |
| 55 | 46 54 | fveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐸 ) 𝑍 ) 𝐻 ) ) = ( ( I ↾ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑋 ) ) ) ‘ ( 𝐾 ∘ 𝐻 ) ) ) |
| 56 | eqid | ⊢ ( comp ‘ 𝑆 ) = ( comp ‘ 𝑆 ) | |
| 57 | 1 2 3 4 5 6 | funcestrcsetclem2 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 58 | 57 | 3ad2antr1 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 59 | 58 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 60 | 1 2 3 4 5 6 | funcestrcsetclem2 | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
| 61 | 60 | 3ad2antr2 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
| 62 | 61 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
| 63 | 1 2 3 4 5 6 | funcestrcsetclem2 | ⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑍 ) ∈ 𝑈 ) |
| 64 | 63 | 3ad2antr3 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑍 ) ∈ 𝑈 ) |
| 65 | 64 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ 𝑍 ) ∈ 𝑈 ) |
| 66 | 1 2 3 4 5 6 | funcestrcsetclem1 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) = ( Base ‘ 𝑋 ) ) |
| 67 | 66 | 3ad2antr1 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑋 ) = ( Base ‘ 𝑋 ) ) |
| 68 | 1 2 3 4 5 6 | funcestrcsetclem1 | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) |
| 69 | 68 | 3ad2antr2 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) |
| 70 | 67 69 | feq23d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐻 : ( 𝐹 ‘ 𝑋 ) ⟶ ( 𝐹 ‘ 𝑌 ) ↔ 𝐻 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) ) |
| 71 | 70 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( 𝐻 : ( 𝐹 ‘ 𝑋 ) ⟶ ( 𝐹 ‘ 𝑌 ) ↔ 𝐻 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) ) |
| 72 | 52 71 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → 𝐻 : ( 𝐹 ‘ 𝑋 ) ⟶ ( 𝐹 ‘ 𝑌 ) ) |
| 73 | simpll | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → 𝜑 ) | |
| 74 | 3simpa | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) | |
| 75 | 74 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| 76 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) | |
| 77 | 1 2 3 4 5 6 7 20 21 | funcestrcsetclem6 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = 𝐻 ) |
| 78 | 73 75 76 77 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = 𝐻 ) |
| 79 | 78 | feq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) : ( 𝐹 ‘ 𝑋 ) ⟶ ( 𝐹 ‘ 𝑌 ) ↔ 𝐻 : ( 𝐹 ‘ 𝑋 ) ⟶ ( 𝐹 ‘ 𝑌 ) ) ) |
| 80 | 72 79 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) : ( 𝐹 ‘ 𝑋 ) ⟶ ( 𝐹 ‘ 𝑌 ) ) |
| 81 | 1 2 3 4 5 6 | funcestrcsetclem1 | ⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑍 ) = ( Base ‘ 𝑍 ) ) |
| 82 | 81 | 3ad2antr3 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑍 ) = ( Base ‘ 𝑍 ) ) |
| 83 | 69 82 | feq23d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐾 : ( 𝐹 ‘ 𝑌 ) ⟶ ( 𝐹 ‘ 𝑍 ) ↔ 𝐾 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑍 ) ) ) |
| 84 | 83 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( 𝐾 : ( 𝐹 ‘ 𝑌 ) ⟶ ( 𝐹 ‘ 𝑍 ) ↔ 𝐾 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑍 ) ) ) |
| 85 | 53 84 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → 𝐾 : ( 𝐹 ‘ 𝑌 ) ⟶ ( 𝐹 ‘ 𝑍 ) ) |
| 86 | 3simpc | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) | |
| 87 | 86 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) |
| 88 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) | |
| 89 | 1 2 3 4 5 6 7 21 28 | funcestrcsetclem6 | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) → ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) = 𝐾 ) |
| 90 | 73 87 88 89 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) = 𝐾 ) |
| 91 | 90 | feq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) : ( 𝐹 ‘ 𝑌 ) ⟶ ( 𝐹 ‘ 𝑍 ) ↔ 𝐾 : ( 𝐹 ‘ 𝑌 ) ⟶ ( 𝐹 ‘ 𝑍 ) ) ) |
| 92 | 85 91 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) : ( 𝐹 ‘ 𝑌 ) ⟶ ( 𝐹 ‘ 𝑍 ) ) |
| 93 | 2 47 56 59 62 65 80 92 | setcco | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ∘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) |
| 94 | 90 78 | coeq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ∘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) = ( 𝐾 ∘ 𝐻 ) ) |
| 95 | 93 94 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) = ( 𝐾 ∘ 𝐻 ) ) |
| 96 | 43 55 95 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐸 ) 𝑍 ) 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) |
| 97 | 96 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐸 ) 𝑍 ) 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) ) |
| 98 | 31 97 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐸 ) 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 ( Hom ‘ 𝐸 ) 𝑍 ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐸 ) 𝑍 ) 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) ) |
| 99 | 98 | 3impia | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐸 ) 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 ( Hom ‘ 𝐸 ) 𝑍 ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐸 ) 𝑍 ) 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) |