This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex conjugate of a sum. (Contributed by Paul Chapman, 9-Nov-2007) (Revised by Mario Carneiro, 25-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumre.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fsumre.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| Assertion | fsumcj | ⊢ ( 𝜑 → ( ∗ ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( ∗ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumre.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fsumre.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | cjf | ⊢ ∗ : ℂ ⟶ ℂ | |
| 4 | cjadd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ∗ ‘ ( 𝑥 + 𝑦 ) ) = ( ( ∗ ‘ 𝑥 ) + ( ∗ ‘ 𝑦 ) ) ) | |
| 5 | 1 2 3 4 | fsumrelem | ⊢ ( 𝜑 → ( ∗ ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( ∗ ‘ 𝐵 ) ) |