This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of fsumcn for two-argument mappings. (Contributed by Mario Carneiro, 6-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumcn.3 | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| fsumcn.4 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| fsumcn.5 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fsum2cn.7 | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| fsum2cn.8 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐽 ×t 𝐿 ) Cn 𝐾 ) ) | ||
| Assertion | fsum2cn | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( ( 𝐽 ×t 𝐿 ) Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumcn.3 | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 2 | fsumcn.4 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 3 | fsumcn.5 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 4 | fsum2cn.7 | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 5 | fsum2cn.8 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐽 ×t 𝐿 ) Cn 𝐾 ) ) | |
| 6 | nfcv | ⊢ Ⅎ 𝑢 Σ 𝑘 ∈ 𝐴 𝐵 | |
| 7 | nfcv | ⊢ Ⅎ 𝑣 Σ 𝑘 ∈ 𝐴 𝐵 | |
| 8 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 9 | nfcv | ⊢ Ⅎ 𝑥 𝑣 | |
| 10 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑢 / 𝑥 ⦌ 𝐵 | |
| 11 | 9 10 | nfcsbw | ⊢ Ⅎ 𝑥 ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 |
| 12 | 8 11 | nfsum | ⊢ Ⅎ 𝑥 Σ 𝑘 ∈ 𝐴 ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 |
| 13 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 14 | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 | |
| 15 | 13 14 | nfsum | ⊢ Ⅎ 𝑦 Σ 𝑘 ∈ 𝐴 ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 |
| 16 | csbeq1a | ⊢ ( 𝑥 = 𝑢 → 𝐵 = ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) | |
| 17 | csbeq1a | ⊢ ( 𝑦 = 𝑣 → ⦋ 𝑢 / 𝑥 ⦌ 𝐵 = ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) | |
| 18 | 16 17 | sylan9eq | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝐵 = ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
| 19 | 18 | sumeq2sdv | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ 𝐴 ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
| 20 | 6 7 12 15 19 | cbvmpo | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) = ( 𝑢 ∈ 𝑋 , 𝑣 ∈ 𝑌 ↦ Σ 𝑘 ∈ 𝐴 ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
| 21 | vex | ⊢ 𝑢 ∈ V | |
| 22 | vex | ⊢ 𝑣 ∈ V | |
| 23 | 21 22 | op2ndd | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( 2nd ‘ 𝑧 ) = 𝑣 ) |
| 24 | 23 | csbeq1d | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 = ⦋ 𝑣 / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) |
| 25 | 21 22 | op1std | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( 1st ‘ 𝑧 ) = 𝑢 ) |
| 26 | 25 | csbeq1d | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 = ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
| 27 | 26 | csbeq2dv | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ⦋ 𝑣 / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 = ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
| 28 | 24 27 | eqtrd | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 = ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
| 29 | 28 | sumeq2sdv | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → Σ 𝑘 ∈ 𝐴 ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 = Σ 𝑘 ∈ 𝐴 ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
| 30 | 29 | mpompt | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ Σ 𝑘 ∈ 𝐴 ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) = ( 𝑢 ∈ 𝑋 , 𝑣 ∈ 𝑌 ↦ Σ 𝑘 ∈ 𝐴 ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
| 31 | 20 30 | eqtr4i | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) = ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ Σ 𝑘 ∈ 𝐴 ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) |
| 32 | txtopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) | |
| 33 | 2 4 32 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 34 | nfcv | ⊢ Ⅎ 𝑢 𝐵 | |
| 35 | nfcv | ⊢ Ⅎ 𝑣 𝐵 | |
| 36 | 34 35 11 14 18 | cbvmpo | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) = ( 𝑢 ∈ 𝑋 , 𝑣 ∈ 𝑌 ↦ ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
| 37 | 28 | mpompt | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) = ( 𝑢 ∈ 𝑋 , 𝑣 ∈ 𝑌 ↦ ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
| 38 | 36 37 | eqtr4i | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) = ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) |
| 39 | 38 5 | eqeltrrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) ∈ ( ( 𝐽 ×t 𝐿 ) Cn 𝐾 ) ) |
| 40 | 1 33 3 39 | fsumcn | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ Σ 𝑘 ∈ 𝐴 ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) ∈ ( ( 𝐽 ×t 𝐿 ) Cn 𝐾 ) ) |
| 41 | 31 40 | eqeltrid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( ( 𝐽 ×t 𝐿 ) Cn 𝐾 ) ) |