This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set is a family of subsets of some base set, then so is its finite intersection. (Contributed by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fipwss | ⊢ ( 𝐴 ⊆ 𝒫 𝑋 → ( fi ‘ 𝐴 ) ⊆ 𝒫 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fiuni | ⊢ ( 𝐴 ∈ V → ∪ 𝐴 = ∪ ( fi ‘ 𝐴 ) ) | |
| 2 | 1 | sseq1d | ⊢ ( 𝐴 ∈ V → ( ∪ 𝐴 ⊆ 𝑋 ↔ ∪ ( fi ‘ 𝐴 ) ⊆ 𝑋 ) ) |
| 3 | sspwuni | ⊢ ( 𝐴 ⊆ 𝒫 𝑋 ↔ ∪ 𝐴 ⊆ 𝑋 ) | |
| 4 | sspwuni | ⊢ ( ( fi ‘ 𝐴 ) ⊆ 𝒫 𝑋 ↔ ∪ ( fi ‘ 𝐴 ) ⊆ 𝑋 ) | |
| 5 | 2 3 4 | 3bitr4g | ⊢ ( 𝐴 ∈ V → ( 𝐴 ⊆ 𝒫 𝑋 ↔ ( fi ‘ 𝐴 ) ⊆ 𝒫 𝑋 ) ) |
| 6 | 5 | biimpa | ⊢ ( ( 𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 𝑋 ) → ( fi ‘ 𝐴 ) ⊆ 𝒫 𝑋 ) |
| 7 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( fi ‘ 𝐴 ) = ∅ ) | |
| 8 | 0ss | ⊢ ∅ ⊆ 𝒫 𝑋 | |
| 9 | 7 8 | eqsstrdi | ⊢ ( ¬ 𝐴 ∈ V → ( fi ‘ 𝐴 ) ⊆ 𝒫 𝑋 ) |
| 10 | 9 | adantr | ⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 𝑋 ) → ( fi ‘ 𝐴 ) ⊆ 𝒫 𝑋 ) |
| 11 | 6 10 | pm2.61ian | ⊢ ( 𝐴 ⊆ 𝒫 𝑋 → ( fi ‘ 𝐴 ) ⊆ 𝒫 𝑋 ) |