This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter base has the finite intersection property. (Contributed by Jeff Hankins, 2-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fbasfip | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ¬ ∅ ∈ ( fi ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | ⊢ ( 𝑦 ∈ ( 𝒫 𝐹 ∩ Fin ) ↔ ( 𝑦 ∈ 𝒫 𝐹 ∧ 𝑦 ∈ Fin ) ) | |
| 2 | elpwi | ⊢ ( 𝑦 ∈ 𝒫 𝐹 → 𝑦 ⊆ 𝐹 ) | |
| 3 | 2 | anim1i | ⊢ ( ( 𝑦 ∈ 𝒫 𝐹 ∧ 𝑦 ∈ Fin ) → ( 𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin ) ) |
| 4 | 1 3 | sylbi | ⊢ ( 𝑦 ∈ ( 𝒫 𝐹 ∩ Fin ) → ( 𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin ) ) |
| 5 | fbssint | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin ) → ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ∩ 𝑦 ) | |
| 6 | 5 | 3expb | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ( 𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin ) ) → ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ∩ 𝑦 ) |
| 7 | 4 6 | sylan2 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝐹 ∩ Fin ) ) → ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ∩ 𝑦 ) |
| 8 | 0nelfb | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ¬ ∅ ∈ 𝐹 ) | |
| 9 | 8 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝐹 ∩ Fin ) ) ∧ 𝑧 ∈ 𝐹 ) → ¬ ∅ ∈ 𝐹 ) |
| 10 | eleq1 | ⊢ ( 𝑧 = ∅ → ( 𝑧 ∈ 𝐹 ↔ ∅ ∈ 𝐹 ) ) | |
| 11 | 10 | biimpcd | ⊢ ( 𝑧 ∈ 𝐹 → ( 𝑧 = ∅ → ∅ ∈ 𝐹 ) ) |
| 12 | 11 | adantl | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝐹 ∩ Fin ) ) ∧ 𝑧 ∈ 𝐹 ) → ( 𝑧 = ∅ → ∅ ∈ 𝐹 ) ) |
| 13 | 9 12 | mtod | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝐹 ∩ Fin ) ) ∧ 𝑧 ∈ 𝐹 ) → ¬ 𝑧 = ∅ ) |
| 14 | ss0 | ⊢ ( 𝑧 ⊆ ∅ → 𝑧 = ∅ ) | |
| 15 | 13 14 | nsyl | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝐹 ∩ Fin ) ) ∧ 𝑧 ∈ 𝐹 ) → ¬ 𝑧 ⊆ ∅ ) |
| 16 | 15 | adantrr | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝐹 ∩ Fin ) ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ∩ 𝑦 ) ) → ¬ 𝑧 ⊆ ∅ ) |
| 17 | sseq2 | ⊢ ( ∅ = ∩ 𝑦 → ( 𝑧 ⊆ ∅ ↔ 𝑧 ⊆ ∩ 𝑦 ) ) | |
| 18 | 17 | biimprcd | ⊢ ( 𝑧 ⊆ ∩ 𝑦 → ( ∅ = ∩ 𝑦 → 𝑧 ⊆ ∅ ) ) |
| 19 | 18 | ad2antll | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝐹 ∩ Fin ) ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ∩ 𝑦 ) ) → ( ∅ = ∩ 𝑦 → 𝑧 ⊆ ∅ ) ) |
| 20 | 16 19 | mtod | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝐹 ∩ Fin ) ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ∩ 𝑦 ) ) → ¬ ∅ = ∩ 𝑦 ) |
| 21 | 7 20 | rexlimddv | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝐹 ∩ Fin ) ) → ¬ ∅ = ∩ 𝑦 ) |
| 22 | 21 | nrexdv | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ¬ ∃ 𝑦 ∈ ( 𝒫 𝐹 ∩ Fin ) ∅ = ∩ 𝑦 ) |
| 23 | 0ex | ⊢ ∅ ∈ V | |
| 24 | elfi | ⊢ ( ( ∅ ∈ V ∧ 𝐹 ∈ ( fBas ‘ 𝑋 ) ) → ( ∅ ∈ ( fi ‘ 𝐹 ) ↔ ∃ 𝑦 ∈ ( 𝒫 𝐹 ∩ Fin ) ∅ = ∩ 𝑦 ) ) | |
| 25 | 23 24 | mpan | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ∅ ∈ ( fi ‘ 𝐹 ) ↔ ∃ 𝑦 ∈ ( 𝒫 𝐹 ∩ Fin ) ∅ = ∩ 𝑦 ) ) |
| 26 | 22 25 | mtbird | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ¬ ∅ ∈ ( fi ‘ 𝐹 ) ) |