This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple of a sum, for nonnegative multiples. (Contributed by Mario Carneiro, 13-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgdi.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgdi.m | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgdi.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | mulgnn0di | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgdi.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgdi.m | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgdi.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | cmnmnd | ⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) | |
| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → 𝐺 ∈ Mnd ) |
| 6 | 1 3 | mndcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 7 | 6 | 3expb | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 8 | 5 7 | sylan | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 9 | 1 3 | cmncom | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 10 | 9 | 3expb | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 11 | 10 | ad4ant14 | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 12 | 1 3 | mndass | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 13 | 5 12 | sylan | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 14 | simpr | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℕ ) | |
| 15 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 16 | 14 15 | eleqtrdi | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 17 | simplr2 | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → 𝑋 ∈ 𝐵 ) | |
| 18 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... 𝑀 ) → 𝑘 ∈ ℕ ) | |
| 19 | fvconst2g | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑘 ) = 𝑋 ) | |
| 20 | 17 18 19 | syl2an | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑘 ) = 𝑋 ) |
| 21 | 17 | adantr | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → 𝑋 ∈ 𝐵 ) |
| 22 | 20 21 | eqeltrd | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑘 ) ∈ 𝐵 ) |
| 23 | simplr3 | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → 𝑌 ∈ 𝐵 ) | |
| 24 | fvconst2g | ⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 𝑌 } ) ‘ 𝑘 ) = 𝑌 ) | |
| 25 | 23 18 24 | syl2an | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( ℕ × { 𝑌 } ) ‘ 𝑘 ) = 𝑌 ) |
| 26 | 23 | adantr | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → 𝑌 ∈ 𝐵 ) |
| 27 | 25 26 | eqeltrd | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( ℕ × { 𝑌 } ) ‘ 𝑘 ) ∈ 𝐵 ) |
| 28 | 1 3 | mndcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 29 | 5 17 23 28 | syl3anc | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 30 | fvconst2g | ⊢ ( ( ( 𝑋 + 𝑌 ) ∈ 𝐵 ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { ( 𝑋 + 𝑌 ) } ) ‘ 𝑘 ) = ( 𝑋 + 𝑌 ) ) | |
| 31 | 29 18 30 | syl2an | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( ℕ × { ( 𝑋 + 𝑌 ) } ) ‘ 𝑘 ) = ( 𝑋 + 𝑌 ) ) |
| 32 | 20 25 | oveq12d | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( ( ℕ × { 𝑋 } ) ‘ 𝑘 ) + ( ( ℕ × { 𝑌 } ) ‘ 𝑘 ) ) = ( 𝑋 + 𝑌 ) ) |
| 33 | 31 32 | eqtr4d | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( ℕ × { ( 𝑋 + 𝑌 ) } ) ‘ 𝑘 ) = ( ( ( ℕ × { 𝑋 } ) ‘ 𝑘 ) + ( ( ℕ × { 𝑌 } ) ‘ 𝑘 ) ) ) |
| 34 | 8 11 13 16 22 27 33 | seqcaopr | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → ( seq 1 ( + , ( ℕ × { ( 𝑋 + 𝑌 ) } ) ) ‘ 𝑀 ) = ( ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑀 ) + ( seq 1 ( + , ( ℕ × { 𝑌 } ) ) ‘ 𝑀 ) ) ) |
| 35 | eqid | ⊢ seq 1 ( + , ( ℕ × { ( 𝑋 + 𝑌 ) } ) ) = seq 1 ( + , ( ℕ × { ( 𝑋 + 𝑌 ) } ) ) | |
| 36 | 1 3 2 35 | mulgnn | ⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝑋 + 𝑌 ) ∈ 𝐵 ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( seq 1 ( + , ( ℕ × { ( 𝑋 + 𝑌 ) } ) ) ‘ 𝑀 ) ) |
| 37 | 14 29 36 | syl2anc | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( seq 1 ( + , ( ℕ × { ( 𝑋 + 𝑌 ) } ) ) ‘ 𝑀 ) ) |
| 38 | eqid | ⊢ seq 1 ( + , ( ℕ × { 𝑋 } ) ) = seq 1 ( + , ( ℕ × { 𝑋 } ) ) | |
| 39 | 1 3 2 38 | mulgnn | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 · 𝑋 ) = ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑀 ) ) |
| 40 | 14 17 39 | syl2anc | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → ( 𝑀 · 𝑋 ) = ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑀 ) ) |
| 41 | eqid | ⊢ seq 1 ( + , ( ℕ × { 𝑌 } ) ) = seq 1 ( + , ( ℕ × { 𝑌 } ) ) | |
| 42 | 1 3 2 41 | mulgnn | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 · 𝑌 ) = ( seq 1 ( + , ( ℕ × { 𝑌 } ) ) ‘ 𝑀 ) ) |
| 43 | 14 23 42 | syl2anc | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → ( 𝑀 · 𝑌 ) = ( seq 1 ( + , ( ℕ × { 𝑌 } ) ) ‘ 𝑀 ) ) |
| 44 | 40 43 | oveq12d | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) = ( ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑀 ) + ( seq 1 ( + , ( ℕ × { 𝑌 } ) ) ‘ 𝑀 ) ) ) |
| 45 | 34 37 44 | 3eqtr4d | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |
| 46 | 4 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → 𝐺 ∈ Mnd ) |
| 47 | simplr2 | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → 𝑋 ∈ 𝐵 ) | |
| 48 | simplr3 | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → 𝑌 ∈ 𝐵 ) | |
| 49 | 46 47 48 28 | syl3anc | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 50 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 51 | 1 50 2 | mulg0 | ⊢ ( ( 𝑋 + 𝑌 ) ∈ 𝐵 → ( 0 · ( 𝑋 + 𝑌 ) ) = ( 0g ‘ 𝐺 ) ) |
| 52 | 49 51 | syl | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 0 · ( 𝑋 + 𝑌 ) ) = ( 0g ‘ 𝐺 ) ) |
| 53 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 54 | 53 50 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 55 | 53 3 50 | mndlid | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 56 | 4 54 55 | syl2anc2 | ⊢ ( 𝐺 ∈ CMnd → ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 57 | 56 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 58 | 52 57 | eqtr4d | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 0 · ( 𝑋 + 𝑌 ) ) = ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) ) |
| 59 | simpr | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → 𝑀 = 0 ) | |
| 60 | 59 | oveq1d | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( 0 · ( 𝑋 + 𝑌 ) ) ) |
| 61 | 59 | oveq1d | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 𝑀 · 𝑋 ) = ( 0 · 𝑋 ) ) |
| 62 | 1 50 2 | mulg0 | ⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 63 | 47 62 | syl | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 64 | 61 63 | eqtrd | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 𝑀 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 65 | 59 | oveq1d | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 𝑀 · 𝑌 ) = ( 0 · 𝑌 ) ) |
| 66 | 1 50 2 | mulg0 | ⊢ ( 𝑌 ∈ 𝐵 → ( 0 · 𝑌 ) = ( 0g ‘ 𝐺 ) ) |
| 67 | 48 66 | syl | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 0 · 𝑌 ) = ( 0g ‘ 𝐺 ) ) |
| 68 | 65 67 | eqtrd | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 𝑀 · 𝑌 ) = ( 0g ‘ 𝐺 ) ) |
| 69 | 64 68 | oveq12d | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) = ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) ) |
| 70 | 58 60 69 | 3eqtr4d | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |
| 71 | simpr1 | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑀 ∈ ℕ0 ) | |
| 72 | elnn0 | ⊢ ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) | |
| 73 | 71 72 | sylib | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) |
| 74 | 45 70 73 | mpjaodan | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |