This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of generators is contained in a submonoid iff the set of words on the generators is in the submonoid. This can be viewed as an elementary way of saying "the monoidal closure of J is Word J ". (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frmdmnd.m | ⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) | |
| frmdgsum.u | ⊢ 𝑈 = ( varFMnd ‘ 𝐼 ) | ||
| Assertion | frmdss2 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ↔ Word 𝐽 ⊆ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdmnd.m | ⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) | |
| 2 | frmdgsum.u | ⊢ 𝑈 = ( varFMnd ‘ 𝐼 ) | |
| 3 | simpl1 | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → 𝐼 ∈ 𝑉 ) | |
| 4 | simpl2 | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → 𝐽 ⊆ 𝐼 ) | |
| 5 | sswrd | ⊢ ( 𝐽 ⊆ 𝐼 → Word 𝐽 ⊆ Word 𝐼 ) | |
| 6 | 4 5 | syl | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → Word 𝐽 ⊆ Word 𝐼 ) |
| 7 | simprr | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → 𝑥 ∈ Word 𝐽 ) | |
| 8 | 6 7 | sseldd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → 𝑥 ∈ Word 𝐼 ) |
| 9 | 1 2 | frmdgsum | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) = 𝑥 ) |
| 10 | 3 8 9 | syl2anc | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) = 𝑥 ) |
| 11 | simpl3 | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) | |
| 12 | wrdf | ⊢ ( 𝑥 ∈ Word 𝐽 → 𝑥 : ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ⟶ 𝐽 ) | |
| 13 | 12 | ad2antll | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → 𝑥 : ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ⟶ 𝐽 ) |
| 14 | 13 | frnd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → ran 𝑥 ⊆ 𝐽 ) |
| 15 | cores | ⊢ ( ran 𝑥 ⊆ 𝐽 → ( ( 𝑈 ↾ 𝐽 ) ∘ 𝑥 ) = ( 𝑈 ∘ 𝑥 ) ) | |
| 16 | 14 15 | syl | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → ( ( 𝑈 ↾ 𝐽 ) ∘ 𝑥 ) = ( 𝑈 ∘ 𝑥 ) ) |
| 17 | 2 | vrmdf | ⊢ ( 𝐼 ∈ 𝑉 → 𝑈 : 𝐼 ⟶ Word 𝐼 ) |
| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → 𝑈 : 𝐼 ⟶ Word 𝐼 ) |
| 19 | 18 | ffnd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → 𝑈 Fn 𝐼 ) |
| 20 | fnssres | ⊢ ( ( 𝑈 Fn 𝐼 ∧ 𝐽 ⊆ 𝐼 ) → ( 𝑈 ↾ 𝐽 ) Fn 𝐽 ) | |
| 21 | 19 4 20 | syl2an2r | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → ( 𝑈 ↾ 𝐽 ) Fn 𝐽 ) |
| 22 | df-ima | ⊢ ( 𝑈 “ 𝐽 ) = ran ( 𝑈 ↾ 𝐽 ) | |
| 23 | simprl | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ) | |
| 24 | 22 23 | eqsstrrid | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → ran ( 𝑈 ↾ 𝐽 ) ⊆ 𝐴 ) |
| 25 | df-f | ⊢ ( ( 𝑈 ↾ 𝐽 ) : 𝐽 ⟶ 𝐴 ↔ ( ( 𝑈 ↾ 𝐽 ) Fn 𝐽 ∧ ran ( 𝑈 ↾ 𝐽 ) ⊆ 𝐴 ) ) | |
| 26 | 21 24 25 | sylanbrc | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → ( 𝑈 ↾ 𝐽 ) : 𝐽 ⟶ 𝐴 ) |
| 27 | wrdco | ⊢ ( ( 𝑥 ∈ Word 𝐽 ∧ ( 𝑈 ↾ 𝐽 ) : 𝐽 ⟶ 𝐴 ) → ( ( 𝑈 ↾ 𝐽 ) ∘ 𝑥 ) ∈ Word 𝐴 ) | |
| 28 | 7 26 27 | syl2anc | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → ( ( 𝑈 ↾ 𝐽 ) ∘ 𝑥 ) ∈ Word 𝐴 ) |
| 29 | 16 28 | eqeltrrd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → ( 𝑈 ∘ 𝑥 ) ∈ Word 𝐴 ) |
| 30 | gsumwsubmcl | ⊢ ( ( 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ∧ ( 𝑈 ∘ 𝑥 ) ∈ Word 𝐴 ) → ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) ∈ 𝐴 ) | |
| 31 | 11 29 30 | syl2anc | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) ∈ 𝐴 ) |
| 32 | 10 31 | eqeltrrd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → 𝑥 ∈ 𝐴 ) |
| 33 | 32 | expr | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ) → ( 𝑥 ∈ Word 𝐽 → 𝑥 ∈ 𝐴 ) ) |
| 34 | 33 | ssrdv | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ) → Word 𝐽 ⊆ 𝐴 ) |
| 35 | 34 | ex | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 → Word 𝐽 ⊆ 𝐴 ) ) |
| 36 | simpl1 | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐽 ) → 𝐼 ∈ 𝑉 ) | |
| 37 | simp2 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → 𝐽 ⊆ 𝐼 ) | |
| 38 | 37 | sselda | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ 𝐼 ) |
| 39 | 2 | vrmdval | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑈 ‘ 𝑥 ) = 〈“ 𝑥 ”〉 ) |
| 40 | 36 38 39 | syl2anc | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝑈 ‘ 𝑥 ) = 〈“ 𝑥 ”〉 ) |
| 41 | simpr | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ 𝐽 ) | |
| 42 | 41 | s1cld | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐽 ) → 〈“ 𝑥 ”〉 ∈ Word 𝐽 ) |
| 43 | 40 42 | eqeltrd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝑈 ‘ 𝑥 ) ∈ Word 𝐽 ) |
| 44 | 43 | ralrimiva | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → ∀ 𝑥 ∈ 𝐽 ( 𝑈 ‘ 𝑥 ) ∈ Word 𝐽 ) |
| 45 | 18 | ffund | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → Fun 𝑈 ) |
| 46 | 18 | fdmd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → dom 𝑈 = 𝐼 ) |
| 47 | 37 46 | sseqtrrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → 𝐽 ⊆ dom 𝑈 ) |
| 48 | funimass4 | ⊢ ( ( Fun 𝑈 ∧ 𝐽 ⊆ dom 𝑈 ) → ( ( 𝑈 “ 𝐽 ) ⊆ Word 𝐽 ↔ ∀ 𝑥 ∈ 𝐽 ( 𝑈 ‘ 𝑥 ) ∈ Word 𝐽 ) ) | |
| 49 | 45 47 48 | syl2anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → ( ( 𝑈 “ 𝐽 ) ⊆ Word 𝐽 ↔ ∀ 𝑥 ∈ 𝐽 ( 𝑈 ‘ 𝑥 ) ∈ Word 𝐽 ) ) |
| 50 | 44 49 | mpbird | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → ( 𝑈 “ 𝐽 ) ⊆ Word 𝐽 ) |
| 51 | sstr2 | ⊢ ( ( 𝑈 “ 𝐽 ) ⊆ Word 𝐽 → ( Word 𝐽 ⊆ 𝐴 → ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ) ) | |
| 52 | 50 51 | syl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → ( Word 𝐽 ⊆ 𝐴 → ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ) ) |
| 53 | 35 52 | impbid | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ↔ Word 𝐽 ⊆ 𝐴 ) ) |