This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frmdup.m | ⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) | |
| frmdup.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| frmdup.e | ⊢ 𝐸 = ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) | ||
| frmdup.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| frmdup.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑋 ) | ||
| frmdup.a | ⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝐵 ) | ||
| Assertion | frmdup1 | ⊢ ( 𝜑 → 𝐸 ∈ ( 𝑀 MndHom 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdup.m | ⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) | |
| 2 | frmdup.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | frmdup.e | ⊢ 𝐸 = ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) | |
| 4 | frmdup.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 5 | frmdup.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑋 ) | |
| 6 | frmdup.a | ⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝐵 ) | |
| 7 | 1 | frmdmnd | ⊢ ( 𝐼 ∈ 𝑋 → 𝑀 ∈ Mnd ) |
| 8 | 5 7 | syl | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| 9 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ Word 𝐼 ) → 𝐺 ∈ Mnd ) |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ Word 𝐼 ) → 𝑥 ∈ Word 𝐼 ) | |
| 11 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ Word 𝐼 ) → 𝐴 : 𝐼 ⟶ 𝐵 ) |
| 12 | wrdco | ⊢ ( ( 𝑥 ∈ Word 𝐼 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( 𝐴 ∘ 𝑥 ) ∈ Word 𝐵 ) | |
| 13 | 10 11 12 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝐴 ∘ 𝑥 ) ∈ Word 𝐵 ) |
| 14 | 2 | gsumwcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐴 ∘ 𝑥 ) ∈ Word 𝐵 ) → ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ∈ 𝐵 ) |
| 15 | 9 13 14 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ∈ 𝐵 ) |
| 16 | 15 3 | fmptd | ⊢ ( 𝜑 → 𝐸 : Word 𝐼 ⟶ 𝐵 ) |
| 17 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 18 | 1 17 | frmdbas | ⊢ ( 𝐼 ∈ 𝑋 → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
| 19 | 5 18 | syl | ⊢ ( 𝜑 → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
| 20 | 19 | feq2d | ⊢ ( 𝜑 → ( 𝐸 : ( Base ‘ 𝑀 ) ⟶ 𝐵 ↔ 𝐸 : Word 𝐼 ⟶ 𝐵 ) ) |
| 21 | 16 20 | mpbird | ⊢ ( 𝜑 → 𝐸 : ( Base ‘ 𝑀 ) ⟶ 𝐵 ) |
| 22 | 1 17 | frmdelbas | ⊢ ( 𝑦 ∈ ( Base ‘ 𝑀 ) → 𝑦 ∈ Word 𝐼 ) |
| 23 | 22 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑦 ∈ Word 𝐼 ) |
| 24 | 1 17 | frmdelbas | ⊢ ( 𝑧 ∈ ( Base ‘ 𝑀 ) → 𝑧 ∈ Word 𝐼 ) |
| 25 | 24 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑧 ∈ Word 𝐼 ) |
| 26 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝐴 : 𝐼 ⟶ 𝐵 ) |
| 27 | ccatco | ⊢ ( ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ Word 𝐼 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) = ( ( 𝐴 ∘ 𝑦 ) ++ ( 𝐴 ∘ 𝑧 ) ) ) | |
| 28 | 23 25 26 27 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) = ( ( 𝐴 ∘ 𝑦 ) ++ ( 𝐴 ∘ 𝑧 ) ) ) |
| 29 | 28 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐺 Σg ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) ) = ( 𝐺 Σg ( ( 𝐴 ∘ 𝑦 ) ++ ( 𝐴 ∘ 𝑧 ) ) ) ) |
| 30 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝐺 ∈ Mnd ) |
| 31 | wrdco | ⊢ ( ( 𝑦 ∈ Word 𝐼 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( 𝐴 ∘ 𝑦 ) ∈ Word 𝐵 ) | |
| 32 | 23 26 31 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐴 ∘ 𝑦 ) ∈ Word 𝐵 ) |
| 33 | wrdco | ⊢ ( ( 𝑧 ∈ Word 𝐼 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( 𝐴 ∘ 𝑧 ) ∈ Word 𝐵 ) | |
| 34 | 25 26 33 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐴 ∘ 𝑧 ) ∈ Word 𝐵 ) |
| 35 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 36 | 2 35 | gsumccat | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐴 ∘ 𝑦 ) ∈ Word 𝐵 ∧ ( 𝐴 ∘ 𝑧 ) ∈ Word 𝐵 ) → ( 𝐺 Σg ( ( 𝐴 ∘ 𝑦 ) ++ ( 𝐴 ∘ 𝑧 ) ) ) = ( ( 𝐺 Σg ( 𝐴 ∘ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐴 ∘ 𝑧 ) ) ) ) |
| 37 | 30 32 34 36 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐺 Σg ( ( 𝐴 ∘ 𝑦 ) ++ ( 𝐴 ∘ 𝑧 ) ) ) = ( ( 𝐺 Σg ( 𝐴 ∘ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐴 ∘ 𝑧 ) ) ) ) |
| 38 | 29 37 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐺 Σg ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) ) = ( ( 𝐺 Σg ( 𝐴 ∘ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐴 ∘ 𝑧 ) ) ) ) |
| 39 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 40 | 1 17 39 | frmdadd | ⊢ ( ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑦 ++ 𝑧 ) ) |
| 41 | 40 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑦 ++ 𝑧 ) ) |
| 42 | 41 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐸 ‘ ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) = ( 𝐸 ‘ ( 𝑦 ++ 𝑧 ) ) ) |
| 43 | ccatcl | ⊢ ( ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ Word 𝐼 ) → ( 𝑦 ++ 𝑧 ) ∈ Word 𝐼 ) | |
| 44 | 23 25 43 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑦 ++ 𝑧 ) ∈ Word 𝐼 ) |
| 45 | coeq2 | ⊢ ( 𝑥 = ( 𝑦 ++ 𝑧 ) → ( 𝐴 ∘ 𝑥 ) = ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) ) | |
| 46 | 45 | oveq2d | ⊢ ( 𝑥 = ( 𝑦 ++ 𝑧 ) → ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) = ( 𝐺 Σg ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) ) ) |
| 47 | ovex | ⊢ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ∈ V | |
| 48 | 46 3 47 | fvmpt3i | ⊢ ( ( 𝑦 ++ 𝑧 ) ∈ Word 𝐼 → ( 𝐸 ‘ ( 𝑦 ++ 𝑧 ) ) = ( 𝐺 Σg ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) ) ) |
| 49 | 44 48 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐸 ‘ ( 𝑦 ++ 𝑧 ) ) = ( 𝐺 Σg ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) ) ) |
| 50 | 42 49 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐸 ‘ ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) = ( 𝐺 Σg ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) ) ) |
| 51 | coeq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∘ 𝑥 ) = ( 𝐴 ∘ 𝑦 ) ) | |
| 52 | 51 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) = ( 𝐺 Σg ( 𝐴 ∘ 𝑦 ) ) ) |
| 53 | 52 3 47 | fvmpt3i | ⊢ ( 𝑦 ∈ Word 𝐼 → ( 𝐸 ‘ 𝑦 ) = ( 𝐺 Σg ( 𝐴 ∘ 𝑦 ) ) ) |
| 54 | coeq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐴 ∘ 𝑥 ) = ( 𝐴 ∘ 𝑧 ) ) | |
| 55 | 54 | oveq2d | ⊢ ( 𝑥 = 𝑧 → ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) = ( 𝐺 Σg ( 𝐴 ∘ 𝑧 ) ) ) |
| 56 | 55 3 47 | fvmpt3i | ⊢ ( 𝑧 ∈ Word 𝐼 → ( 𝐸 ‘ 𝑧 ) = ( 𝐺 Σg ( 𝐴 ∘ 𝑧 ) ) ) |
| 57 | 53 56 | oveqan12d | ⊢ ( ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ Word 𝐼 ) → ( ( 𝐸 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐸 ‘ 𝑧 ) ) = ( ( 𝐺 Σg ( 𝐴 ∘ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐴 ∘ 𝑧 ) ) ) ) |
| 58 | 23 25 57 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐸 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐸 ‘ 𝑧 ) ) = ( ( 𝐺 Σg ( 𝐴 ∘ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐴 ∘ 𝑧 ) ) ) ) |
| 59 | 38 50 58 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐸 ‘ ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) = ( ( 𝐸 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐸 ‘ 𝑧 ) ) ) |
| 60 | 59 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( 𝐸 ‘ ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) = ( ( 𝐸 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐸 ‘ 𝑧 ) ) ) |
| 61 | wrd0 | ⊢ ∅ ∈ Word 𝐼 | |
| 62 | coeq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 ∘ 𝑥 ) = ( 𝐴 ∘ ∅ ) ) | |
| 63 | co02 | ⊢ ( 𝐴 ∘ ∅ ) = ∅ | |
| 64 | 62 63 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( 𝐴 ∘ 𝑥 ) = ∅ ) |
| 65 | 64 | oveq2d | ⊢ ( 𝑥 = ∅ → ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) = ( 𝐺 Σg ∅ ) ) |
| 66 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 67 | 66 | gsum0 | ⊢ ( 𝐺 Σg ∅ ) = ( 0g ‘ 𝐺 ) |
| 68 | 65 67 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) = ( 0g ‘ 𝐺 ) ) |
| 69 | 68 3 47 | fvmpt3i | ⊢ ( ∅ ∈ Word 𝐼 → ( 𝐸 ‘ ∅ ) = ( 0g ‘ 𝐺 ) ) |
| 70 | 61 69 | mp1i | ⊢ ( 𝜑 → ( 𝐸 ‘ ∅ ) = ( 0g ‘ 𝐺 ) ) |
| 71 | 21 60 70 | 3jca | ⊢ ( 𝜑 → ( 𝐸 : ( Base ‘ 𝑀 ) ⟶ 𝐵 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( 𝐸 ‘ ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) = ( ( 𝐸 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐸 ‘ 𝑧 ) ) ∧ ( 𝐸 ‘ ∅ ) = ( 0g ‘ 𝐺 ) ) ) |
| 72 | 1 | frmd0 | ⊢ ∅ = ( 0g ‘ 𝑀 ) |
| 73 | 17 2 39 35 72 66 | ismhm | ⊢ ( 𝐸 ∈ ( 𝑀 MndHom 𝐺 ) ↔ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ∈ Mnd ) ∧ ( 𝐸 : ( Base ‘ 𝑀 ) ⟶ 𝐵 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( 𝐸 ‘ ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) = ( ( 𝐸 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐸 ‘ 𝑧 ) ) ∧ ( 𝐸 ‘ ∅ ) = ( 0g ‘ 𝐺 ) ) ) ) |
| 74 | 8 4 71 73 | syl21anbrc | ⊢ ( 𝜑 → 𝐸 ∈ ( 𝑀 MndHom 𝐺 ) ) |