This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of generators is contained in a submonoid iff the set of words on the generators is in the submonoid. This can be viewed as an elementary way of saying "the monoidal closure of J is Word J ". (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frmdmnd.m | |- M = ( freeMnd ` I ) |
|
| frmdgsum.u | |- U = ( varFMnd ` I ) |
||
| Assertion | frmdss2 | |- ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) -> ( ( U " J ) C_ A <-> Word J C_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdmnd.m | |- M = ( freeMnd ` I ) |
|
| 2 | frmdgsum.u | |- U = ( varFMnd ` I ) |
|
| 3 | simpl1 | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ ( ( U " J ) C_ A /\ x e. Word J ) ) -> I e. V ) |
|
| 4 | simpl2 | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ ( ( U " J ) C_ A /\ x e. Word J ) ) -> J C_ I ) |
|
| 5 | sswrd | |- ( J C_ I -> Word J C_ Word I ) |
|
| 6 | 4 5 | syl | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ ( ( U " J ) C_ A /\ x e. Word J ) ) -> Word J C_ Word I ) |
| 7 | simprr | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ ( ( U " J ) C_ A /\ x e. Word J ) ) -> x e. Word J ) |
|
| 8 | 6 7 | sseldd | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ ( ( U " J ) C_ A /\ x e. Word J ) ) -> x e. Word I ) |
| 9 | 1 2 | frmdgsum | |- ( ( I e. V /\ x e. Word I ) -> ( M gsum ( U o. x ) ) = x ) |
| 10 | 3 8 9 | syl2anc | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ ( ( U " J ) C_ A /\ x e. Word J ) ) -> ( M gsum ( U o. x ) ) = x ) |
| 11 | simpl3 | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ ( ( U " J ) C_ A /\ x e. Word J ) ) -> A e. ( SubMnd ` M ) ) |
|
| 12 | wrdf | |- ( x e. Word J -> x : ( 0 ..^ ( # ` x ) ) --> J ) |
|
| 13 | 12 | ad2antll | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ ( ( U " J ) C_ A /\ x e. Word J ) ) -> x : ( 0 ..^ ( # ` x ) ) --> J ) |
| 14 | 13 | frnd | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ ( ( U " J ) C_ A /\ x e. Word J ) ) -> ran x C_ J ) |
| 15 | cores | |- ( ran x C_ J -> ( ( U |` J ) o. x ) = ( U o. x ) ) |
|
| 16 | 14 15 | syl | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ ( ( U " J ) C_ A /\ x e. Word J ) ) -> ( ( U |` J ) o. x ) = ( U o. x ) ) |
| 17 | 2 | vrmdf | |- ( I e. V -> U : I --> Word I ) |
| 18 | 17 | 3ad2ant1 | |- ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) -> U : I --> Word I ) |
| 19 | 18 | ffnd | |- ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) -> U Fn I ) |
| 20 | fnssres | |- ( ( U Fn I /\ J C_ I ) -> ( U |` J ) Fn J ) |
|
| 21 | 19 4 20 | syl2an2r | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ ( ( U " J ) C_ A /\ x e. Word J ) ) -> ( U |` J ) Fn J ) |
| 22 | df-ima | |- ( U " J ) = ran ( U |` J ) |
|
| 23 | simprl | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ ( ( U " J ) C_ A /\ x e. Word J ) ) -> ( U " J ) C_ A ) |
|
| 24 | 22 23 | eqsstrrid | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ ( ( U " J ) C_ A /\ x e. Word J ) ) -> ran ( U |` J ) C_ A ) |
| 25 | df-f | |- ( ( U |` J ) : J --> A <-> ( ( U |` J ) Fn J /\ ran ( U |` J ) C_ A ) ) |
|
| 26 | 21 24 25 | sylanbrc | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ ( ( U " J ) C_ A /\ x e. Word J ) ) -> ( U |` J ) : J --> A ) |
| 27 | wrdco | |- ( ( x e. Word J /\ ( U |` J ) : J --> A ) -> ( ( U |` J ) o. x ) e. Word A ) |
|
| 28 | 7 26 27 | syl2anc | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ ( ( U " J ) C_ A /\ x e. Word J ) ) -> ( ( U |` J ) o. x ) e. Word A ) |
| 29 | 16 28 | eqeltrrd | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ ( ( U " J ) C_ A /\ x e. Word J ) ) -> ( U o. x ) e. Word A ) |
| 30 | gsumwsubmcl | |- ( ( A e. ( SubMnd ` M ) /\ ( U o. x ) e. Word A ) -> ( M gsum ( U o. x ) ) e. A ) |
|
| 31 | 11 29 30 | syl2anc | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ ( ( U " J ) C_ A /\ x e. Word J ) ) -> ( M gsum ( U o. x ) ) e. A ) |
| 32 | 10 31 | eqeltrrd | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ ( ( U " J ) C_ A /\ x e. Word J ) ) -> x e. A ) |
| 33 | 32 | expr | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ ( U " J ) C_ A ) -> ( x e. Word J -> x e. A ) ) |
| 34 | 33 | ssrdv | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ ( U " J ) C_ A ) -> Word J C_ A ) |
| 35 | 34 | ex | |- ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) -> ( ( U " J ) C_ A -> Word J C_ A ) ) |
| 36 | simpl1 | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ x e. J ) -> I e. V ) |
|
| 37 | simp2 | |- ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) -> J C_ I ) |
|
| 38 | 37 | sselda | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ x e. J ) -> x e. I ) |
| 39 | 2 | vrmdval | |- ( ( I e. V /\ x e. I ) -> ( U ` x ) = <" x "> ) |
| 40 | 36 38 39 | syl2anc | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ x e. J ) -> ( U ` x ) = <" x "> ) |
| 41 | simpr | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ x e. J ) -> x e. J ) |
|
| 42 | 41 | s1cld | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ x e. J ) -> <" x "> e. Word J ) |
| 43 | 40 42 | eqeltrd | |- ( ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) /\ x e. J ) -> ( U ` x ) e. Word J ) |
| 44 | 43 | ralrimiva | |- ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) -> A. x e. J ( U ` x ) e. Word J ) |
| 45 | 18 | ffund | |- ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) -> Fun U ) |
| 46 | 18 | fdmd | |- ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) -> dom U = I ) |
| 47 | 37 46 | sseqtrrd | |- ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) -> J C_ dom U ) |
| 48 | funimass4 | |- ( ( Fun U /\ J C_ dom U ) -> ( ( U " J ) C_ Word J <-> A. x e. J ( U ` x ) e. Word J ) ) |
|
| 49 | 45 47 48 | syl2anc | |- ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) -> ( ( U " J ) C_ Word J <-> A. x e. J ( U ` x ) e. Word J ) ) |
| 50 | 44 49 | mpbird | |- ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) -> ( U " J ) C_ Word J ) |
| 51 | sstr2 | |- ( ( U " J ) C_ Word J -> ( Word J C_ A -> ( U " J ) C_ A ) ) |
|
| 52 | 50 51 | syl | |- ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) -> ( Word J C_ A -> ( U " J ) C_ A ) ) |
| 53 | 35 52 | impbid | |- ( ( I e. V /\ J C_ I /\ A e. ( SubMnd ` M ) ) -> ( ( U " J ) C_ A <-> Word J C_ A ) ) |