This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of an element of the free group. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpadd.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| frgpadd.g | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | ||
| frgpadd.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| frgpinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| frgpinv.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| Assertion | frgpinv | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝑁 ‘ [ 𝐴 ] ∼ ) = [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpadd.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | frgpadd.g | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| 3 | frgpadd.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 4 | frgpinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 5 | frgpinv.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 6 | fviss | ⊢ ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o ) | |
| 7 | 1 6 | eqsstri | ⊢ 𝑊 ⊆ Word ( 𝐼 × 2o ) |
| 8 | 7 | sseli | ⊢ ( 𝐴 ∈ 𝑊 → 𝐴 ∈ Word ( 𝐼 × 2o ) ) |
| 9 | revcl | ⊢ ( 𝐴 ∈ Word ( 𝐼 × 2o ) → ( reverse ‘ 𝐴 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐴 ∈ 𝑊 → ( reverse ‘ 𝐴 ) ∈ Word ( 𝐼 × 2o ) ) |
| 11 | 5 | efgmf | ⊢ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) |
| 12 | wrdco | ⊢ ( ( ( reverse ‘ 𝐴 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ) → ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ∈ Word ( 𝐼 × 2o ) ) | |
| 13 | 10 11 12 | sylancl | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ∈ Word ( 𝐼 × 2o ) ) |
| 14 | 1 | efgrcl | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |
| 15 | 14 | simprd | ⊢ ( 𝐴 ∈ 𝑊 → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 16 | 13 15 | eleqtrrd | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ∈ 𝑊 ) |
| 17 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 18 | 1 2 3 17 | frgpadd | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ∈ 𝑊 ) → ( [ 𝐴 ] ∼ ( +g ‘ 𝐺 ) [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ) = [ ( 𝐴 ++ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ] ∼ ) |
| 19 | 16 18 | mpdan | ⊢ ( 𝐴 ∈ 𝑊 → ( [ 𝐴 ] ∼ ( +g ‘ 𝐺 ) [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ) = [ ( 𝐴 ++ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ] ∼ ) |
| 20 | 1 3 | efger | ⊢ ∼ Er 𝑊 |
| 21 | 20 | a1i | ⊢ ( 𝐴 ∈ 𝑊 → ∼ Er 𝑊 ) |
| 22 | eqid | ⊢ ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 23 | 1 3 5 22 | efginvrel2 | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝐴 ++ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ∼ ∅ ) |
| 24 | 21 23 | erthi | ⊢ ( 𝐴 ∈ 𝑊 → [ ( 𝐴 ++ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ] ∼ = [ ∅ ] ∼ ) |
| 25 | 2 3 | frgp0 | ⊢ ( 𝐼 ∈ V → ( 𝐺 ∈ Grp ∧ [ ∅ ] ∼ = ( 0g ‘ 𝐺 ) ) ) |
| 26 | 25 | adantr | ⊢ ( ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) → ( 𝐺 ∈ Grp ∧ [ ∅ ] ∼ = ( 0g ‘ 𝐺 ) ) ) |
| 27 | 14 26 | syl | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝐺 ∈ Grp ∧ [ ∅ ] ∼ = ( 0g ‘ 𝐺 ) ) ) |
| 28 | 27 | simprd | ⊢ ( 𝐴 ∈ 𝑊 → [ ∅ ] ∼ = ( 0g ‘ 𝐺 ) ) |
| 29 | 19 24 28 | 3eqtrd | ⊢ ( 𝐴 ∈ 𝑊 → ( [ 𝐴 ] ∼ ( +g ‘ 𝐺 ) [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ) = ( 0g ‘ 𝐺 ) ) |
| 30 | 27 | simpld | ⊢ ( 𝐴 ∈ 𝑊 → 𝐺 ∈ Grp ) |
| 31 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 32 | 2 3 1 31 | frgpeccl | ⊢ ( 𝐴 ∈ 𝑊 → [ 𝐴 ] ∼ ∈ ( Base ‘ 𝐺 ) ) |
| 33 | 2 3 1 31 | frgpeccl | ⊢ ( ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ∈ 𝑊 → [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ∈ ( Base ‘ 𝐺 ) ) |
| 34 | 16 33 | syl | ⊢ ( 𝐴 ∈ 𝑊 → [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ∈ ( Base ‘ 𝐺 ) ) |
| 35 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 36 | 31 17 35 4 | grpinvid1 | ⊢ ( ( 𝐺 ∈ Grp ∧ [ 𝐴 ] ∼ ∈ ( Base ‘ 𝐺 ) ∧ [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑁 ‘ [ 𝐴 ] ∼ ) = [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ↔ ( [ 𝐴 ] ∼ ( +g ‘ 𝐺 ) [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ) = ( 0g ‘ 𝐺 ) ) ) |
| 37 | 30 32 34 36 | syl3anc | ⊢ ( 𝐴 ∈ 𝑊 → ( ( 𝑁 ‘ [ 𝐴 ] ∼ ) = [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ↔ ( [ 𝐴 ] ∼ ( +g ‘ 𝐺 ) [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ) = ( 0g ‘ 𝐺 ) ) ) |
| 38 | 29 37 | mpbird | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝑁 ‘ [ 𝐴 ] ∼ ) = [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ) |