This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of an element of the free group. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpadd.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| frgpadd.g | |- G = ( freeGrp ` I ) |
||
| frgpadd.r | |- .~ = ( ~FG ` I ) |
||
| frgpinv.n | |- N = ( invg ` G ) |
||
| frgpinv.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| Assertion | frgpinv | |- ( A e. W -> ( N ` [ A ] .~ ) = [ ( M o. ( reverse ` A ) ) ] .~ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpadd.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | frgpadd.g | |- G = ( freeGrp ` I ) |
|
| 3 | frgpadd.r | |- .~ = ( ~FG ` I ) |
|
| 4 | frgpinv.n | |- N = ( invg ` G ) |
|
| 5 | frgpinv.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 6 | fviss | |- ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) |
|
| 7 | 1 6 | eqsstri | |- W C_ Word ( I X. 2o ) |
| 8 | 7 | sseli | |- ( A e. W -> A e. Word ( I X. 2o ) ) |
| 9 | revcl | |- ( A e. Word ( I X. 2o ) -> ( reverse ` A ) e. Word ( I X. 2o ) ) |
|
| 10 | 8 9 | syl | |- ( A e. W -> ( reverse ` A ) e. Word ( I X. 2o ) ) |
| 11 | 5 | efgmf | |- M : ( I X. 2o ) --> ( I X. 2o ) |
| 12 | wrdco | |- ( ( ( reverse ` A ) e. Word ( I X. 2o ) /\ M : ( I X. 2o ) --> ( I X. 2o ) ) -> ( M o. ( reverse ` A ) ) e. Word ( I X. 2o ) ) |
|
| 13 | 10 11 12 | sylancl | |- ( A e. W -> ( M o. ( reverse ` A ) ) e. Word ( I X. 2o ) ) |
| 14 | 1 | efgrcl | |- ( A e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
| 15 | 14 | simprd | |- ( A e. W -> W = Word ( I X. 2o ) ) |
| 16 | 13 15 | eleqtrrd | |- ( A e. W -> ( M o. ( reverse ` A ) ) e. W ) |
| 17 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 18 | 1 2 3 17 | frgpadd | |- ( ( A e. W /\ ( M o. ( reverse ` A ) ) e. W ) -> ( [ A ] .~ ( +g ` G ) [ ( M o. ( reverse ` A ) ) ] .~ ) = [ ( A ++ ( M o. ( reverse ` A ) ) ) ] .~ ) |
| 19 | 16 18 | mpdan | |- ( A e. W -> ( [ A ] .~ ( +g ` G ) [ ( M o. ( reverse ` A ) ) ] .~ ) = [ ( A ++ ( M o. ( reverse ` A ) ) ) ] .~ ) |
| 20 | 1 3 | efger | |- .~ Er W |
| 21 | 20 | a1i | |- ( A e. W -> .~ Er W ) |
| 22 | eqid | |- ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 23 | 1 3 5 22 | efginvrel2 | |- ( A e. W -> ( A ++ ( M o. ( reverse ` A ) ) ) .~ (/) ) |
| 24 | 21 23 | erthi | |- ( A e. W -> [ ( A ++ ( M o. ( reverse ` A ) ) ) ] .~ = [ (/) ] .~ ) |
| 25 | 2 3 | frgp0 | |- ( I e. _V -> ( G e. Grp /\ [ (/) ] .~ = ( 0g ` G ) ) ) |
| 26 | 25 | adantr | |- ( ( I e. _V /\ W = Word ( I X. 2o ) ) -> ( G e. Grp /\ [ (/) ] .~ = ( 0g ` G ) ) ) |
| 27 | 14 26 | syl | |- ( A e. W -> ( G e. Grp /\ [ (/) ] .~ = ( 0g ` G ) ) ) |
| 28 | 27 | simprd | |- ( A e. W -> [ (/) ] .~ = ( 0g ` G ) ) |
| 29 | 19 24 28 | 3eqtrd | |- ( A e. W -> ( [ A ] .~ ( +g ` G ) [ ( M o. ( reverse ` A ) ) ] .~ ) = ( 0g ` G ) ) |
| 30 | 27 | simpld | |- ( A e. W -> G e. Grp ) |
| 31 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 32 | 2 3 1 31 | frgpeccl | |- ( A e. W -> [ A ] .~ e. ( Base ` G ) ) |
| 33 | 2 3 1 31 | frgpeccl | |- ( ( M o. ( reverse ` A ) ) e. W -> [ ( M o. ( reverse ` A ) ) ] .~ e. ( Base ` G ) ) |
| 34 | 16 33 | syl | |- ( A e. W -> [ ( M o. ( reverse ` A ) ) ] .~ e. ( Base ` G ) ) |
| 35 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 36 | 31 17 35 4 | grpinvid1 | |- ( ( G e. Grp /\ [ A ] .~ e. ( Base ` G ) /\ [ ( M o. ( reverse ` A ) ) ] .~ e. ( Base ` G ) ) -> ( ( N ` [ A ] .~ ) = [ ( M o. ( reverse ` A ) ) ] .~ <-> ( [ A ] .~ ( +g ` G ) [ ( M o. ( reverse ` A ) ) ] .~ ) = ( 0g ` G ) ) ) |
| 37 | 30 32 34 36 | syl3anc | |- ( A e. W -> ( ( N ` [ A ] .~ ) = [ ( M o. ( reverse ` A ) ) ] .~ <-> ( [ A ] .~ ( +g ` G ) [ ( M o. ( reverse ` A ) ) ] .~ ) = ( 0g ` G ) ) ) |
| 38 | 29 37 | mpbird | |- ( A e. W -> ( N ` [ A ] .~ ) = [ ( M o. ( reverse ` A ) ) ] .~ ) |