This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Stefan O'Rear, 9-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fresaunres2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ∪ 𝐺 ) ↾ 𝐵 ) = 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐶 → 𝐹 Fn 𝐴 ) | |
| 2 | ffn | ⊢ ( 𝐺 : 𝐵 ⟶ 𝐶 → 𝐺 Fn 𝐵 ) | |
| 3 | id | ⊢ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) | |
| 4 | resasplit | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ∪ 𝐺 ) = ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ) | |
| 5 | 1 2 3 4 | syl3an | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ∪ 𝐺 ) = ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ) |
| 6 | 5 | reseq1d | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ∪ 𝐺 ) ↾ 𝐵 ) = ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ↾ 𝐵 ) ) |
| 7 | resundir | ⊢ ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ↾ 𝐵 ) = ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ↾ 𝐵 ) ∪ ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ↾ 𝐵 ) ) | |
| 8 | inss2 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 | |
| 9 | resabs2 | ⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ↾ 𝐵 ) = ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ↾ 𝐵 ) = ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) |
| 11 | resundir | ⊢ ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ↾ 𝐵 ) = ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) ∪ ( ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ↾ 𝐵 ) ) | |
| 12 | 10 11 | uneq12i | ⊢ ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ↾ 𝐵 ) ∪ ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ↾ 𝐵 ) ) = ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) ∪ ( ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ↾ 𝐵 ) ) ) |
| 13 | dmres | ⊢ dom ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) = ( 𝐵 ∩ dom ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) | |
| 14 | dmres | ⊢ dom ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∩ dom 𝐹 ) | |
| 15 | 14 | ineq2i | ⊢ ( 𝐵 ∩ dom ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) = ( 𝐵 ∩ ( ( 𝐴 ∖ 𝐵 ) ∩ dom 𝐹 ) ) |
| 16 | disjdif | ⊢ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ | |
| 17 | 16 | ineq1i | ⊢ ( ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) ∩ dom 𝐹 ) = ( ∅ ∩ dom 𝐹 ) |
| 18 | inass | ⊢ ( ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) ∩ dom 𝐹 ) = ( 𝐵 ∩ ( ( 𝐴 ∖ 𝐵 ) ∩ dom 𝐹 ) ) | |
| 19 | 0in | ⊢ ( ∅ ∩ dom 𝐹 ) = ∅ | |
| 20 | 17 18 19 | 3eqtr3i | ⊢ ( 𝐵 ∩ ( ( 𝐴 ∖ 𝐵 ) ∩ dom 𝐹 ) ) = ∅ |
| 21 | 15 20 | eqtri | ⊢ ( 𝐵 ∩ dom ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) = ∅ |
| 22 | 13 21 | eqtri | ⊢ dom ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) = ∅ |
| 23 | relres | ⊢ Rel ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) | |
| 24 | reldm0 | ⊢ ( Rel ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) → ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) = ∅ ↔ dom ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) = ∅ ) ) | |
| 25 | 23 24 | ax-mp | ⊢ ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) = ∅ ↔ dom ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) = ∅ ) |
| 26 | 22 25 | mpbir | ⊢ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) = ∅ |
| 27 | difss | ⊢ ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 | |
| 28 | resabs2 | ⊢ ( ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 → ( ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ↾ 𝐵 ) = ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) | |
| 29 | 27 28 | ax-mp | ⊢ ( ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ↾ 𝐵 ) = ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) |
| 30 | 26 29 | uneq12i | ⊢ ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) ∪ ( ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ↾ 𝐵 ) ) = ( ∅ ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) |
| 31 | 30 | uneq2i | ⊢ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) ∪ ( ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ↾ 𝐵 ) ) ) = ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ∅ ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 32 | simp3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) | |
| 33 | 32 | uneq1d | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ∅ ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) = ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ∅ ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ) |
| 34 | uncom | ⊢ ( ∅ ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ∪ ∅ ) | |
| 35 | un0 | ⊢ ( ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ∪ ∅ ) = ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) | |
| 36 | 34 35 | eqtri | ⊢ ( ∅ ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) = ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) |
| 37 | 36 | uneq2i | ⊢ ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ∅ ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) = ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) |
| 38 | resundi | ⊢ ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) | |
| 39 | incom | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) | |
| 40 | 39 | uneq1i | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) = ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∖ 𝐴 ) ) |
| 41 | inundif | ⊢ ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 | |
| 42 | 40 41 | eqtri | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 |
| 43 | 42 | reseq2i | ⊢ ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( 𝐺 ↾ 𝐵 ) |
| 44 | fnresdm | ⊢ ( 𝐺 Fn 𝐵 → ( 𝐺 ↾ 𝐵 ) = 𝐺 ) | |
| 45 | 2 44 | syl | ⊢ ( 𝐺 : 𝐵 ⟶ 𝐶 → ( 𝐺 ↾ 𝐵 ) = 𝐺 ) |
| 46 | 45 | adantl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ) → ( 𝐺 ↾ 𝐵 ) = 𝐺 ) |
| 47 | 43 46 | eqtrid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ) → ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) = 𝐺 ) |
| 48 | 38 47 | eqtr3id | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ) → ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) = 𝐺 ) |
| 49 | 37 48 | eqtrid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ) → ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ∅ ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) = 𝐺 ) |
| 50 | 49 | 3adant3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ∅ ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) = 𝐺 ) |
| 51 | 33 50 | eqtrd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ∅ ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) = 𝐺 ) |
| 52 | 31 51 | eqtrid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) ∪ ( ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ↾ 𝐵 ) ) ) = 𝐺 ) |
| 53 | 12 52 | eqtrid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ↾ 𝐵 ) ∪ ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ↾ 𝐵 ) ) = 𝐺 ) |
| 54 | 7 53 | eqtrid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ↾ 𝐵 ) = 𝐺 ) |
| 55 | 6 54 | eqtrd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ∪ 𝐺 ) ↾ 𝐵 ) = 𝐺 ) |