This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Stefan O'Rear, 9-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fresaunres2 | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F u. G ) |` B ) = G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn | |- ( F : A --> C -> F Fn A ) |
|
| 2 | ffn | |- ( G : B --> C -> G Fn B ) |
|
| 3 | id | |- ( ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) -> ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) |
|
| 4 | resasplit | |- ( ( F Fn A /\ G Fn B /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( F u. G ) = ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) ) |
|
| 5 | 1 2 3 4 | syl3an | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( F u. G ) = ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) ) |
| 6 | 5 | reseq1d | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F u. G ) |` B ) = ( ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) |` B ) ) |
| 7 | resundir | |- ( ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) |` B ) = ( ( ( F |` ( A i^i B ) ) |` B ) u. ( ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) |` B ) ) |
|
| 8 | inss2 | |- ( A i^i B ) C_ B |
|
| 9 | resabs2 | |- ( ( A i^i B ) C_ B -> ( ( F |` ( A i^i B ) ) |` B ) = ( F |` ( A i^i B ) ) ) |
|
| 10 | 8 9 | ax-mp | |- ( ( F |` ( A i^i B ) ) |` B ) = ( F |` ( A i^i B ) ) |
| 11 | resundir | |- ( ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) |` B ) = ( ( ( F |` ( A \ B ) ) |` B ) u. ( ( G |` ( B \ A ) ) |` B ) ) |
|
| 12 | 10 11 | uneq12i | |- ( ( ( F |` ( A i^i B ) ) |` B ) u. ( ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) |` B ) ) = ( ( F |` ( A i^i B ) ) u. ( ( ( F |` ( A \ B ) ) |` B ) u. ( ( G |` ( B \ A ) ) |` B ) ) ) |
| 13 | dmres | |- dom ( ( F |` ( A \ B ) ) |` B ) = ( B i^i dom ( F |` ( A \ B ) ) ) |
|
| 14 | dmres | |- dom ( F |` ( A \ B ) ) = ( ( A \ B ) i^i dom F ) |
|
| 15 | 14 | ineq2i | |- ( B i^i dom ( F |` ( A \ B ) ) ) = ( B i^i ( ( A \ B ) i^i dom F ) ) |
| 16 | disjdif | |- ( B i^i ( A \ B ) ) = (/) |
|
| 17 | 16 | ineq1i | |- ( ( B i^i ( A \ B ) ) i^i dom F ) = ( (/) i^i dom F ) |
| 18 | inass | |- ( ( B i^i ( A \ B ) ) i^i dom F ) = ( B i^i ( ( A \ B ) i^i dom F ) ) |
|
| 19 | 0in | |- ( (/) i^i dom F ) = (/) |
|
| 20 | 17 18 19 | 3eqtr3i | |- ( B i^i ( ( A \ B ) i^i dom F ) ) = (/) |
| 21 | 15 20 | eqtri | |- ( B i^i dom ( F |` ( A \ B ) ) ) = (/) |
| 22 | 13 21 | eqtri | |- dom ( ( F |` ( A \ B ) ) |` B ) = (/) |
| 23 | relres | |- Rel ( ( F |` ( A \ B ) ) |` B ) |
|
| 24 | reldm0 | |- ( Rel ( ( F |` ( A \ B ) ) |` B ) -> ( ( ( F |` ( A \ B ) ) |` B ) = (/) <-> dom ( ( F |` ( A \ B ) ) |` B ) = (/) ) ) |
|
| 25 | 23 24 | ax-mp | |- ( ( ( F |` ( A \ B ) ) |` B ) = (/) <-> dom ( ( F |` ( A \ B ) ) |` B ) = (/) ) |
| 26 | 22 25 | mpbir | |- ( ( F |` ( A \ B ) ) |` B ) = (/) |
| 27 | difss | |- ( B \ A ) C_ B |
|
| 28 | resabs2 | |- ( ( B \ A ) C_ B -> ( ( G |` ( B \ A ) ) |` B ) = ( G |` ( B \ A ) ) ) |
|
| 29 | 27 28 | ax-mp | |- ( ( G |` ( B \ A ) ) |` B ) = ( G |` ( B \ A ) ) |
| 30 | 26 29 | uneq12i | |- ( ( ( F |` ( A \ B ) ) |` B ) u. ( ( G |` ( B \ A ) ) |` B ) ) = ( (/) u. ( G |` ( B \ A ) ) ) |
| 31 | 30 | uneq2i | |- ( ( F |` ( A i^i B ) ) u. ( ( ( F |` ( A \ B ) ) |` B ) u. ( ( G |` ( B \ A ) ) |` B ) ) ) = ( ( F |` ( A i^i B ) ) u. ( (/) u. ( G |` ( B \ A ) ) ) ) |
| 32 | simp3 | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) |
|
| 33 | 32 | uneq1d | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F |` ( A i^i B ) ) u. ( (/) u. ( G |` ( B \ A ) ) ) ) = ( ( G |` ( A i^i B ) ) u. ( (/) u. ( G |` ( B \ A ) ) ) ) ) |
| 34 | uncom | |- ( (/) u. ( G |` ( B \ A ) ) ) = ( ( G |` ( B \ A ) ) u. (/) ) |
|
| 35 | un0 | |- ( ( G |` ( B \ A ) ) u. (/) ) = ( G |` ( B \ A ) ) |
|
| 36 | 34 35 | eqtri | |- ( (/) u. ( G |` ( B \ A ) ) ) = ( G |` ( B \ A ) ) |
| 37 | 36 | uneq2i | |- ( ( G |` ( A i^i B ) ) u. ( (/) u. ( G |` ( B \ A ) ) ) ) = ( ( G |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) |
| 38 | resundi | |- ( G |` ( ( A i^i B ) u. ( B \ A ) ) ) = ( ( G |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) |
|
| 39 | incom | |- ( A i^i B ) = ( B i^i A ) |
|
| 40 | 39 | uneq1i | |- ( ( A i^i B ) u. ( B \ A ) ) = ( ( B i^i A ) u. ( B \ A ) ) |
| 41 | inundif | |- ( ( B i^i A ) u. ( B \ A ) ) = B |
|
| 42 | 40 41 | eqtri | |- ( ( A i^i B ) u. ( B \ A ) ) = B |
| 43 | 42 | reseq2i | |- ( G |` ( ( A i^i B ) u. ( B \ A ) ) ) = ( G |` B ) |
| 44 | fnresdm | |- ( G Fn B -> ( G |` B ) = G ) |
|
| 45 | 2 44 | syl | |- ( G : B --> C -> ( G |` B ) = G ) |
| 46 | 45 | adantl | |- ( ( F : A --> C /\ G : B --> C ) -> ( G |` B ) = G ) |
| 47 | 43 46 | eqtrid | |- ( ( F : A --> C /\ G : B --> C ) -> ( G |` ( ( A i^i B ) u. ( B \ A ) ) ) = G ) |
| 48 | 38 47 | eqtr3id | |- ( ( F : A --> C /\ G : B --> C ) -> ( ( G |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) = G ) |
| 49 | 37 48 | eqtrid | |- ( ( F : A --> C /\ G : B --> C ) -> ( ( G |` ( A i^i B ) ) u. ( (/) u. ( G |` ( B \ A ) ) ) ) = G ) |
| 50 | 49 | 3adant3 | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( G |` ( A i^i B ) ) u. ( (/) u. ( G |` ( B \ A ) ) ) ) = G ) |
| 51 | 33 50 | eqtrd | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F |` ( A i^i B ) ) u. ( (/) u. ( G |` ( B \ A ) ) ) ) = G ) |
| 52 | 31 51 | eqtrid | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F |` ( A i^i B ) ) u. ( ( ( F |` ( A \ B ) ) |` B ) u. ( ( G |` ( B \ A ) ) |` B ) ) ) = G ) |
| 53 | 12 52 | eqtrid | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( ( F |` ( A i^i B ) ) |` B ) u. ( ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) |` B ) ) = G ) |
| 54 | 7 53 | eqtrid | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) |` B ) = G ) |
| 55 | 6 54 | eqtrd | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F u. G ) |` B ) = G ) |