This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move the exponential function from inside a finite product to outside a finite sum. (Contributed by Scott Fenton, 26-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodefsum.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| fprodefsum.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | ||
| fprodefsum.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | ||
| Assertion | fprodefsum | ⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( exp ‘ 𝐴 ) = ( exp ‘ Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodefsum.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | fprodefsum.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | |
| 3 | fprodefsum.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | |
| 4 | 2 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 5 | oveq2 | ⊢ ( 𝑎 = 𝑀 → ( 𝑀 ... 𝑎 ) = ( 𝑀 ... 𝑀 ) ) | |
| 6 | 5 | prodeq1d | ⊢ ( 𝑎 = 𝑀 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ) |
| 7 | 5 | sumeq1d | ⊢ ( 𝑎 = 𝑀 → Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
| 8 | 7 | fveq2d | ⊢ ( 𝑎 = 𝑀 → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
| 9 | 6 8 | eqeq12d | ⊢ ( 𝑎 = 𝑀 → ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ↔ ∏ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑎 = 𝑀 → ( ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
| 11 | oveq2 | ⊢ ( 𝑎 = 𝑛 → ( 𝑀 ... 𝑎 ) = ( 𝑀 ... 𝑛 ) ) | |
| 12 | 11 | prodeq1d | ⊢ ( 𝑎 = 𝑛 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ) |
| 13 | 11 | sumeq1d | ⊢ ( 𝑎 = 𝑛 → Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
| 14 | 13 | fveq2d | ⊢ ( 𝑎 = 𝑛 → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
| 15 | 12 14 | eqeq12d | ⊢ ( 𝑎 = 𝑛 → ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ↔ ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑎 = 𝑛 → ( ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
| 17 | oveq2 | ⊢ ( 𝑎 = ( 𝑛 + 1 ) → ( 𝑀 ... 𝑎 ) = ( 𝑀 ... ( 𝑛 + 1 ) ) ) | |
| 18 | 17 | prodeq1d | ⊢ ( 𝑎 = ( 𝑛 + 1 ) → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ) |
| 19 | 17 | sumeq1d | ⊢ ( 𝑎 = ( 𝑛 + 1 ) → Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
| 20 | 19 | fveq2d | ⊢ ( 𝑎 = ( 𝑛 + 1 ) → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
| 21 | 18 20 | eqeq12d | ⊢ ( 𝑎 = ( 𝑛 + 1 ) → ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ↔ ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) |
| 22 | 21 | imbi2d | ⊢ ( 𝑎 = ( 𝑛 + 1 ) → ( ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
| 23 | oveq2 | ⊢ ( 𝑎 = 𝑁 → ( 𝑀 ... 𝑎 ) = ( 𝑀 ... 𝑁 ) ) | |
| 24 | 23 | prodeq1d | ⊢ ( 𝑎 = 𝑁 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ) |
| 25 | 23 | sumeq1d | ⊢ ( 𝑎 = 𝑁 → Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
| 26 | 25 | fveq2d | ⊢ ( 𝑎 = 𝑁 → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
| 27 | 24 26 | eqeq12d | ⊢ ( 𝑎 = 𝑁 → ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ↔ ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) |
| 28 | 27 | imbi2d | ⊢ ( 𝑎 = 𝑁 → ( ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
| 29 | fzsn | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) | |
| 30 | 29 | adantl | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
| 31 | 30 | prodeq1d | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑚 ∈ { 𝑀 } ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ) |
| 32 | simpr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℤ ) | |
| 33 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 34 | 33 1 | eleqtrrdi | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ 𝑍 ) |
| 35 | efcl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ∈ ℂ ) | |
| 36 | 3 35 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( exp ‘ 𝐴 ) ∈ ℂ ) |
| 37 | 36 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) : 𝑍 ⟶ ℂ ) |
| 38 | 37 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) ∈ ℂ ) |
| 39 | 34 38 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) ∈ ℂ ) |
| 40 | fveq2 | ⊢ ( 𝑚 = 𝑀 → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) ) | |
| 41 | 40 | prodsn | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) ∈ ℂ ) → ∏ 𝑚 ∈ { 𝑀 } ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) ) |
| 42 | 32 39 41 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑚 ∈ { 𝑀 } ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) ) |
| 43 | 34 | adantl | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ 𝑍 ) |
| 44 | fvex | ⊢ ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ∈ V | |
| 45 | nfcv | ⊢ Ⅎ 𝑘 𝑀 | |
| 46 | nfcv | ⊢ Ⅎ 𝑘 exp | |
| 47 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑀 / 𝑘 ⦌ 𝐴 | |
| 48 | 46 47 | nffv | ⊢ Ⅎ 𝑘 ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) |
| 49 | csbeq1a | ⊢ ( 𝑘 = 𝑀 → 𝐴 = ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) | |
| 50 | 49 | fveq2d | ⊢ ( 𝑘 = 𝑀 → ( exp ‘ 𝐴 ) = ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ) |
| 51 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) | |
| 52 | 45 48 50 51 | fvmptf | ⊢ ( ( 𝑀 ∈ 𝑍 ∧ ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ∈ V ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) = ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ) |
| 53 | 43 44 52 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) = ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ) |
| 54 | 31 42 53 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ) |
| 55 | 30 | sumeq1d | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑚 ∈ { 𝑀 } ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
| 56 | 3 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) : 𝑍 ⟶ ℂ ) |
| 57 | 56 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) ∈ ℂ ) |
| 58 | 34 57 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) ∈ ℂ ) |
| 59 | fveq2 | ⊢ ( 𝑚 = 𝑀 → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) ) | |
| 60 | 59 | sumsn | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) ∈ ℂ ) → Σ 𝑚 ∈ { 𝑀 } ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) ) |
| 61 | 32 58 60 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → Σ 𝑚 ∈ { 𝑀 } ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) ) |
| 62 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ ) |
| 63 | 47 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ |
| 64 | 49 | eleq1d | ⊢ ( 𝑘 = 𝑀 → ( 𝐴 ∈ ℂ ↔ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
| 65 | 63 64 | rspc | ⊢ ( 𝑀 ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ → ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
| 66 | 65 | impcom | ⊢ ( ( ∀ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ ∧ 𝑀 ∈ 𝑍 ) → ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 67 | 62 34 66 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 68 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) = ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) | |
| 69 | 68 | fvmpts | ⊢ ( ( 𝑀 ∈ 𝑍 ∧ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) = ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) |
| 70 | 43 67 69 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) = ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) |
| 71 | 55 61 70 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) |
| 72 | 71 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ) |
| 73 | 54 72 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
| 74 | 73 | expcom | ⊢ ( 𝑀 ∈ ℤ → ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) |
| 75 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) | |
| 76 | 1 | peano2uzs | ⊢ ( 𝑛 ∈ 𝑍 → ( 𝑛 + 1 ) ∈ 𝑍 ) |
| 77 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( 𝑛 + 1 ) ∈ 𝑍 ) | |
| 78 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 | |
| 79 | 78 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ |
| 80 | csbeq1a | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → 𝐴 = ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) | |
| 81 | 80 | eleq1d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐴 ∈ ℂ ↔ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
| 82 | 79 81 | rspc | ⊢ ( ( 𝑛 + 1 ) ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ → ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
| 83 | 62 82 | mpan9 | ⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 84 | efcl | ⊢ ( ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ → ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ∈ ℂ ) | |
| 85 | 83 84 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ∈ ℂ ) |
| 86 | nfcv | ⊢ Ⅎ 𝑘 ( 𝑛 + 1 ) | |
| 87 | 46 78 | nffv | ⊢ Ⅎ 𝑘 ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) |
| 88 | 80 | fveq2d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( exp ‘ 𝐴 ) = ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
| 89 | 86 87 88 51 | fvmptf | ⊢ ( ( ( 𝑛 + 1 ) ∈ 𝑍 ∧ ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ∈ ℂ ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) = ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
| 90 | 77 85 89 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) = ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
| 91 | 68 | fvmpts | ⊢ ( ( ( 𝑛 + 1 ) ∈ 𝑍 ∧ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) = ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) |
| 92 | 77 83 91 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) = ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) |
| 93 | 92 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) = ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
| 94 | 90 93 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) = ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 95 | 76 94 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) = ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 96 | 95 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) = ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 97 | 75 96 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) · ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) ) = ( ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) · ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 98 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) | |
| 99 | 98 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 100 | elfzuz | ⊢ ( 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 101 | 100 1 | eleqtrrdi | ⊢ ( 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) → 𝑚 ∈ 𝑍 ) |
| 102 | 37 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 103 | 101 102 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 104 | 103 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 105 | fveq2 | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) ) | |
| 106 | 99 104 105 | fprodp1 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) · ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 107 | 106 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) · ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 108 | 56 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
| 109 | 101 108 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
| 110 | 109 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
| 111 | fveq2 | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) | |
| 112 | 99 110 111 | fsump1 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) + ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 113 | 112 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( exp ‘ ( Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) + ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 114 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ... 𝑛 ) ∈ Fin ) | |
| 115 | elfzuz | ⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 116 | 115 1 | eleqtrrdi | ⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) → 𝑚 ∈ 𝑍 ) |
| 117 | 116 108 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
| 118 | 117 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
| 119 | 114 118 | fsumcl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
| 120 | 56 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 121 | 76 120 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 122 | efadd | ⊢ ( ( Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ∧ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) → ( exp ‘ ( Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) + ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) = ( ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) · ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) ) | |
| 123 | 119 121 122 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( exp ‘ ( Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) + ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) = ( ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) · ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 124 | 113 123 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) · ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 125 | 124 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) · ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 126 | 97 107 125 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
| 127 | 126 | 3exp | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 → ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
| 128 | 127 | com12 | ⊢ ( 𝑛 ∈ 𝑍 → ( 𝜑 → ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
| 129 | 128 | a2d | ⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
| 130 | 1 | eqcomi | ⊢ ( ℤ≥ ‘ 𝑀 ) = 𝑍 |
| 131 | 129 130 | eleq2s | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
| 132 | 10 16 22 28 74 131 | uzind4 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) |
| 133 | 4 132 | mpcom | ⊢ ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
| 134 | fvres | ⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ) | |
| 135 | fzssuz | ⊢ ( 𝑀 ... 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) | |
| 136 | 135 1 | sseqtrri | ⊢ ( 𝑀 ... 𝑁 ) ⊆ 𝑍 |
| 137 | resmpt | ⊢ ( ( 𝑀 ... 𝑁 ) ⊆ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ↾ ( 𝑀 ... 𝑁 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( exp ‘ 𝐴 ) ) ) | |
| 138 | 136 137 | ax-mp | ⊢ ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ↾ ( 𝑀 ... 𝑁 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( exp ‘ 𝐴 ) ) |
| 139 | 138 | fveq1i | ⊢ ( ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) |
| 140 | 134 139 | eqtr3di | ⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ) |
| 141 | 140 | prodeq2i | ⊢ ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) |
| 142 | prodfc | ⊢ ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( exp ‘ 𝐴 ) | |
| 143 | 141 142 | eqtri | ⊢ ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( exp ‘ 𝐴 ) |
| 144 | fvres | ⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) | |
| 145 | resmpt | ⊢ ( ( 𝑀 ... 𝑁 ) ⊆ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑁 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ) | |
| 146 | 136 145 | ax-mp | ⊢ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑁 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) |
| 147 | 146 | fveq1i | ⊢ ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ‘ 𝑚 ) |
| 148 | 144 147 | eqtr3di | ⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ‘ 𝑚 ) ) |
| 149 | 148 | sumeq2i | ⊢ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ‘ 𝑚 ) |
| 150 | sumfc | ⊢ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 | |
| 151 | 149 150 | eqtri | ⊢ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 |
| 152 | 151 | fveq2i | ⊢ ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( exp ‘ Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) |
| 153 | 133 143 152 | 3eqtr3g | ⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( exp ‘ 𝐴 ) = ( exp ‘ Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) ) |