This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move the exponential function from inside a finite product to outside a finite sum. (Contributed by Scott Fenton, 26-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodefsum.1 | |- Z = ( ZZ>= ` M ) |
|
| fprodefsum.2 | |- ( ph -> N e. Z ) |
||
| fprodefsum.3 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
||
| Assertion | fprodefsum | |- ( ph -> prod_ k e. ( M ... N ) ( exp ` A ) = ( exp ` sum_ k e. ( M ... N ) A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodefsum.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | fprodefsum.2 | |- ( ph -> N e. Z ) |
|
| 3 | fprodefsum.3 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
|
| 4 | 2 1 | eleqtrdi | |- ( ph -> N e. ( ZZ>= ` M ) ) |
| 5 | oveq2 | |- ( a = M -> ( M ... a ) = ( M ... M ) ) |
|
| 6 | 5 | prodeq1d | |- ( a = M -> prod_ m e. ( M ... a ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = prod_ m e. ( M ... M ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) ) |
| 7 | 5 | sumeq1d | |- ( a = M -> sum_ m e. ( M ... a ) ( ( k e. Z |-> A ) ` m ) = sum_ m e. ( M ... M ) ( ( k e. Z |-> A ) ` m ) ) |
| 8 | 7 | fveq2d | |- ( a = M -> ( exp ` sum_ m e. ( M ... a ) ( ( k e. Z |-> A ) ` m ) ) = ( exp ` sum_ m e. ( M ... M ) ( ( k e. Z |-> A ) ` m ) ) ) |
| 9 | 6 8 | eqeq12d | |- ( a = M -> ( prod_ m e. ( M ... a ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... a ) ( ( k e. Z |-> A ) ` m ) ) <-> prod_ m e. ( M ... M ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... M ) ( ( k e. Z |-> A ) ` m ) ) ) ) |
| 10 | 9 | imbi2d | |- ( a = M -> ( ( ph -> prod_ m e. ( M ... a ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... a ) ( ( k e. Z |-> A ) ` m ) ) ) <-> ( ph -> prod_ m e. ( M ... M ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... M ) ( ( k e. Z |-> A ) ` m ) ) ) ) ) |
| 11 | oveq2 | |- ( a = n -> ( M ... a ) = ( M ... n ) ) |
|
| 12 | 11 | prodeq1d | |- ( a = n -> prod_ m e. ( M ... a ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = prod_ m e. ( M ... n ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) ) |
| 13 | 11 | sumeq1d | |- ( a = n -> sum_ m e. ( M ... a ) ( ( k e. Z |-> A ) ` m ) = sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) ) |
| 14 | 13 | fveq2d | |- ( a = n -> ( exp ` sum_ m e. ( M ... a ) ( ( k e. Z |-> A ) ` m ) ) = ( exp ` sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) ) ) |
| 15 | 12 14 | eqeq12d | |- ( a = n -> ( prod_ m e. ( M ... a ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... a ) ( ( k e. Z |-> A ) ` m ) ) <-> prod_ m e. ( M ... n ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) ) ) ) |
| 16 | 15 | imbi2d | |- ( a = n -> ( ( ph -> prod_ m e. ( M ... a ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... a ) ( ( k e. Z |-> A ) ` m ) ) ) <-> ( ph -> prod_ m e. ( M ... n ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) ) ) ) ) |
| 17 | oveq2 | |- ( a = ( n + 1 ) -> ( M ... a ) = ( M ... ( n + 1 ) ) ) |
|
| 18 | 17 | prodeq1d | |- ( a = ( n + 1 ) -> prod_ m e. ( M ... a ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = prod_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) ) |
| 19 | 17 | sumeq1d | |- ( a = ( n + 1 ) -> sum_ m e. ( M ... a ) ( ( k e. Z |-> A ) ` m ) = sum_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> A ) ` m ) ) |
| 20 | 19 | fveq2d | |- ( a = ( n + 1 ) -> ( exp ` sum_ m e. ( M ... a ) ( ( k e. Z |-> A ) ` m ) ) = ( exp ` sum_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> A ) ` m ) ) ) |
| 21 | 18 20 | eqeq12d | |- ( a = ( n + 1 ) -> ( prod_ m e. ( M ... a ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... a ) ( ( k e. Z |-> A ) ` m ) ) <-> prod_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> A ) ` m ) ) ) ) |
| 22 | 21 | imbi2d | |- ( a = ( n + 1 ) -> ( ( ph -> prod_ m e. ( M ... a ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... a ) ( ( k e. Z |-> A ) ` m ) ) ) <-> ( ph -> prod_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> A ) ` m ) ) ) ) ) |
| 23 | oveq2 | |- ( a = N -> ( M ... a ) = ( M ... N ) ) |
|
| 24 | 23 | prodeq1d | |- ( a = N -> prod_ m e. ( M ... a ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = prod_ m e. ( M ... N ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) ) |
| 25 | 23 | sumeq1d | |- ( a = N -> sum_ m e. ( M ... a ) ( ( k e. Z |-> A ) ` m ) = sum_ m e. ( M ... N ) ( ( k e. Z |-> A ) ` m ) ) |
| 26 | 25 | fveq2d | |- ( a = N -> ( exp ` sum_ m e. ( M ... a ) ( ( k e. Z |-> A ) ` m ) ) = ( exp ` sum_ m e. ( M ... N ) ( ( k e. Z |-> A ) ` m ) ) ) |
| 27 | 24 26 | eqeq12d | |- ( a = N -> ( prod_ m e. ( M ... a ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... a ) ( ( k e. Z |-> A ) ` m ) ) <-> prod_ m e. ( M ... N ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... N ) ( ( k e. Z |-> A ) ` m ) ) ) ) |
| 28 | 27 | imbi2d | |- ( a = N -> ( ( ph -> prod_ m e. ( M ... a ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... a ) ( ( k e. Z |-> A ) ` m ) ) ) <-> ( ph -> prod_ m e. ( M ... N ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... N ) ( ( k e. Z |-> A ) ` m ) ) ) ) ) |
| 29 | fzsn | |- ( M e. ZZ -> ( M ... M ) = { M } ) |
|
| 30 | 29 | adantl | |- ( ( ph /\ M e. ZZ ) -> ( M ... M ) = { M } ) |
| 31 | 30 | prodeq1d | |- ( ( ph /\ M e. ZZ ) -> prod_ m e. ( M ... M ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = prod_ m e. { M } ( ( k e. Z |-> ( exp ` A ) ) ` m ) ) |
| 32 | simpr | |- ( ( ph /\ M e. ZZ ) -> M e. ZZ ) |
|
| 33 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 34 | 33 1 | eleqtrrdi | |- ( M e. ZZ -> M e. Z ) |
| 35 | efcl | |- ( A e. CC -> ( exp ` A ) e. CC ) |
|
| 36 | 3 35 | syl | |- ( ( ph /\ k e. Z ) -> ( exp ` A ) e. CC ) |
| 37 | 36 | fmpttd | |- ( ph -> ( k e. Z |-> ( exp ` A ) ) : Z --> CC ) |
| 38 | 37 | ffvelcdmda | |- ( ( ph /\ M e. Z ) -> ( ( k e. Z |-> ( exp ` A ) ) ` M ) e. CC ) |
| 39 | 34 38 | sylan2 | |- ( ( ph /\ M e. ZZ ) -> ( ( k e. Z |-> ( exp ` A ) ) ` M ) e. CC ) |
| 40 | fveq2 | |- ( m = M -> ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( ( k e. Z |-> ( exp ` A ) ) ` M ) ) |
|
| 41 | 40 | prodsn | |- ( ( M e. ZZ /\ ( ( k e. Z |-> ( exp ` A ) ) ` M ) e. CC ) -> prod_ m e. { M } ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( ( k e. Z |-> ( exp ` A ) ) ` M ) ) |
| 42 | 32 39 41 | syl2anc | |- ( ( ph /\ M e. ZZ ) -> prod_ m e. { M } ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( ( k e. Z |-> ( exp ` A ) ) ` M ) ) |
| 43 | 34 | adantl | |- ( ( ph /\ M e. ZZ ) -> M e. Z ) |
| 44 | fvex | |- ( exp ` [_ M / k ]_ A ) e. _V |
|
| 45 | nfcv | |- F/_ k M |
|
| 46 | nfcv | |- F/_ k exp |
|
| 47 | nfcsb1v | |- F/_ k [_ M / k ]_ A |
|
| 48 | 46 47 | nffv | |- F/_ k ( exp ` [_ M / k ]_ A ) |
| 49 | csbeq1a | |- ( k = M -> A = [_ M / k ]_ A ) |
|
| 50 | 49 | fveq2d | |- ( k = M -> ( exp ` A ) = ( exp ` [_ M / k ]_ A ) ) |
| 51 | eqid | |- ( k e. Z |-> ( exp ` A ) ) = ( k e. Z |-> ( exp ` A ) ) |
|
| 52 | 45 48 50 51 | fvmptf | |- ( ( M e. Z /\ ( exp ` [_ M / k ]_ A ) e. _V ) -> ( ( k e. Z |-> ( exp ` A ) ) ` M ) = ( exp ` [_ M / k ]_ A ) ) |
| 53 | 43 44 52 | sylancl | |- ( ( ph /\ M e. ZZ ) -> ( ( k e. Z |-> ( exp ` A ) ) ` M ) = ( exp ` [_ M / k ]_ A ) ) |
| 54 | 31 42 53 | 3eqtrd | |- ( ( ph /\ M e. ZZ ) -> prod_ m e. ( M ... M ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` [_ M / k ]_ A ) ) |
| 55 | 30 | sumeq1d | |- ( ( ph /\ M e. ZZ ) -> sum_ m e. ( M ... M ) ( ( k e. Z |-> A ) ` m ) = sum_ m e. { M } ( ( k e. Z |-> A ) ` m ) ) |
| 56 | 3 | fmpttd | |- ( ph -> ( k e. Z |-> A ) : Z --> CC ) |
| 57 | 56 | ffvelcdmda | |- ( ( ph /\ M e. Z ) -> ( ( k e. Z |-> A ) ` M ) e. CC ) |
| 58 | 34 57 | sylan2 | |- ( ( ph /\ M e. ZZ ) -> ( ( k e. Z |-> A ) ` M ) e. CC ) |
| 59 | fveq2 | |- ( m = M -> ( ( k e. Z |-> A ) ` m ) = ( ( k e. Z |-> A ) ` M ) ) |
|
| 60 | 59 | sumsn | |- ( ( M e. ZZ /\ ( ( k e. Z |-> A ) ` M ) e. CC ) -> sum_ m e. { M } ( ( k e. Z |-> A ) ` m ) = ( ( k e. Z |-> A ) ` M ) ) |
| 61 | 32 58 60 | syl2anc | |- ( ( ph /\ M e. ZZ ) -> sum_ m e. { M } ( ( k e. Z |-> A ) ` m ) = ( ( k e. Z |-> A ) ` M ) ) |
| 62 | 3 | ralrimiva | |- ( ph -> A. k e. Z A e. CC ) |
| 63 | 47 | nfel1 | |- F/ k [_ M / k ]_ A e. CC |
| 64 | 49 | eleq1d | |- ( k = M -> ( A e. CC <-> [_ M / k ]_ A e. CC ) ) |
| 65 | 63 64 | rspc | |- ( M e. Z -> ( A. k e. Z A e. CC -> [_ M / k ]_ A e. CC ) ) |
| 66 | 65 | impcom | |- ( ( A. k e. Z A e. CC /\ M e. Z ) -> [_ M / k ]_ A e. CC ) |
| 67 | 62 34 66 | syl2an | |- ( ( ph /\ M e. ZZ ) -> [_ M / k ]_ A e. CC ) |
| 68 | eqid | |- ( k e. Z |-> A ) = ( k e. Z |-> A ) |
|
| 69 | 68 | fvmpts | |- ( ( M e. Z /\ [_ M / k ]_ A e. CC ) -> ( ( k e. Z |-> A ) ` M ) = [_ M / k ]_ A ) |
| 70 | 43 67 69 | syl2anc | |- ( ( ph /\ M e. ZZ ) -> ( ( k e. Z |-> A ) ` M ) = [_ M / k ]_ A ) |
| 71 | 55 61 70 | 3eqtrd | |- ( ( ph /\ M e. ZZ ) -> sum_ m e. ( M ... M ) ( ( k e. Z |-> A ) ` m ) = [_ M / k ]_ A ) |
| 72 | 71 | fveq2d | |- ( ( ph /\ M e. ZZ ) -> ( exp ` sum_ m e. ( M ... M ) ( ( k e. Z |-> A ) ` m ) ) = ( exp ` [_ M / k ]_ A ) ) |
| 73 | 54 72 | eqtr4d | |- ( ( ph /\ M e. ZZ ) -> prod_ m e. ( M ... M ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... M ) ( ( k e. Z |-> A ) ` m ) ) ) |
| 74 | 73 | expcom | |- ( M e. ZZ -> ( ph -> prod_ m e. ( M ... M ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... M ) ( ( k e. Z |-> A ) ` m ) ) ) ) |
| 75 | simp3 | |- ( ( ph /\ n e. Z /\ prod_ m e. ( M ... n ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) ) ) -> prod_ m e. ( M ... n ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) ) ) |
|
| 76 | 1 | peano2uzs | |- ( n e. Z -> ( n + 1 ) e. Z ) |
| 77 | simpr | |- ( ( ph /\ ( n + 1 ) e. Z ) -> ( n + 1 ) e. Z ) |
|
| 78 | nfcsb1v | |- F/_ k [_ ( n + 1 ) / k ]_ A |
|
| 79 | 78 | nfel1 | |- F/ k [_ ( n + 1 ) / k ]_ A e. CC |
| 80 | csbeq1a | |- ( k = ( n + 1 ) -> A = [_ ( n + 1 ) / k ]_ A ) |
|
| 81 | 80 | eleq1d | |- ( k = ( n + 1 ) -> ( A e. CC <-> [_ ( n + 1 ) / k ]_ A e. CC ) ) |
| 82 | 79 81 | rspc | |- ( ( n + 1 ) e. Z -> ( A. k e. Z A e. CC -> [_ ( n + 1 ) / k ]_ A e. CC ) ) |
| 83 | 62 82 | mpan9 | |- ( ( ph /\ ( n + 1 ) e. Z ) -> [_ ( n + 1 ) / k ]_ A e. CC ) |
| 84 | efcl | |- ( [_ ( n + 1 ) / k ]_ A e. CC -> ( exp ` [_ ( n + 1 ) / k ]_ A ) e. CC ) |
|
| 85 | 83 84 | syl | |- ( ( ph /\ ( n + 1 ) e. Z ) -> ( exp ` [_ ( n + 1 ) / k ]_ A ) e. CC ) |
| 86 | nfcv | |- F/_ k ( n + 1 ) |
|
| 87 | 46 78 | nffv | |- F/_ k ( exp ` [_ ( n + 1 ) / k ]_ A ) |
| 88 | 80 | fveq2d | |- ( k = ( n + 1 ) -> ( exp ` A ) = ( exp ` [_ ( n + 1 ) / k ]_ A ) ) |
| 89 | 86 87 88 51 | fvmptf | |- ( ( ( n + 1 ) e. Z /\ ( exp ` [_ ( n + 1 ) / k ]_ A ) e. CC ) -> ( ( k e. Z |-> ( exp ` A ) ) ` ( n + 1 ) ) = ( exp ` [_ ( n + 1 ) / k ]_ A ) ) |
| 90 | 77 85 89 | syl2anc | |- ( ( ph /\ ( n + 1 ) e. Z ) -> ( ( k e. Z |-> ( exp ` A ) ) ` ( n + 1 ) ) = ( exp ` [_ ( n + 1 ) / k ]_ A ) ) |
| 91 | 68 | fvmpts | |- ( ( ( n + 1 ) e. Z /\ [_ ( n + 1 ) / k ]_ A e. CC ) -> ( ( k e. Z |-> A ) ` ( n + 1 ) ) = [_ ( n + 1 ) / k ]_ A ) |
| 92 | 77 83 91 | syl2anc | |- ( ( ph /\ ( n + 1 ) e. Z ) -> ( ( k e. Z |-> A ) ` ( n + 1 ) ) = [_ ( n + 1 ) / k ]_ A ) |
| 93 | 92 | fveq2d | |- ( ( ph /\ ( n + 1 ) e. Z ) -> ( exp ` ( ( k e. Z |-> A ) ` ( n + 1 ) ) ) = ( exp ` [_ ( n + 1 ) / k ]_ A ) ) |
| 94 | 90 93 | eqtr4d | |- ( ( ph /\ ( n + 1 ) e. Z ) -> ( ( k e. Z |-> ( exp ` A ) ) ` ( n + 1 ) ) = ( exp ` ( ( k e. Z |-> A ) ` ( n + 1 ) ) ) ) |
| 95 | 76 94 | sylan2 | |- ( ( ph /\ n e. Z ) -> ( ( k e. Z |-> ( exp ` A ) ) ` ( n + 1 ) ) = ( exp ` ( ( k e. Z |-> A ) ` ( n + 1 ) ) ) ) |
| 96 | 95 | 3adant3 | |- ( ( ph /\ n e. Z /\ prod_ m e. ( M ... n ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) ) ) -> ( ( k e. Z |-> ( exp ` A ) ) ` ( n + 1 ) ) = ( exp ` ( ( k e. Z |-> A ) ` ( n + 1 ) ) ) ) |
| 97 | 75 96 | oveq12d | |- ( ( ph /\ n e. Z /\ prod_ m e. ( M ... n ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) ) ) -> ( prod_ m e. ( M ... n ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) x. ( ( k e. Z |-> ( exp ` A ) ) ` ( n + 1 ) ) ) = ( ( exp ` sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) ) x. ( exp ` ( ( k e. Z |-> A ) ` ( n + 1 ) ) ) ) ) |
| 98 | simpr | |- ( ( ph /\ n e. Z ) -> n e. Z ) |
|
| 99 | 98 1 | eleqtrdi | |- ( ( ph /\ n e. Z ) -> n e. ( ZZ>= ` M ) ) |
| 100 | elfzuz | |- ( m e. ( M ... ( n + 1 ) ) -> m e. ( ZZ>= ` M ) ) |
|
| 101 | 100 1 | eleqtrrdi | |- ( m e. ( M ... ( n + 1 ) ) -> m e. Z ) |
| 102 | 37 | ffvelcdmda | |- ( ( ph /\ m e. Z ) -> ( ( k e. Z |-> ( exp ` A ) ) ` m ) e. CC ) |
| 103 | 101 102 | sylan2 | |- ( ( ph /\ m e. ( M ... ( n + 1 ) ) ) -> ( ( k e. Z |-> ( exp ` A ) ) ` m ) e. CC ) |
| 104 | 103 | adantlr | |- ( ( ( ph /\ n e. Z ) /\ m e. ( M ... ( n + 1 ) ) ) -> ( ( k e. Z |-> ( exp ` A ) ) ` m ) e. CC ) |
| 105 | fveq2 | |- ( m = ( n + 1 ) -> ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( ( k e. Z |-> ( exp ` A ) ) ` ( n + 1 ) ) ) |
|
| 106 | 99 104 105 | fprodp1 | |- ( ( ph /\ n e. Z ) -> prod_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( prod_ m e. ( M ... n ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) x. ( ( k e. Z |-> ( exp ` A ) ) ` ( n + 1 ) ) ) ) |
| 107 | 106 | 3adant3 | |- ( ( ph /\ n e. Z /\ prod_ m e. ( M ... n ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) ) ) -> prod_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( prod_ m e. ( M ... n ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) x. ( ( k e. Z |-> ( exp ` A ) ) ` ( n + 1 ) ) ) ) |
| 108 | 56 | ffvelcdmda | |- ( ( ph /\ m e. Z ) -> ( ( k e. Z |-> A ) ` m ) e. CC ) |
| 109 | 101 108 | sylan2 | |- ( ( ph /\ m e. ( M ... ( n + 1 ) ) ) -> ( ( k e. Z |-> A ) ` m ) e. CC ) |
| 110 | 109 | adantlr | |- ( ( ( ph /\ n e. Z ) /\ m e. ( M ... ( n + 1 ) ) ) -> ( ( k e. Z |-> A ) ` m ) e. CC ) |
| 111 | fveq2 | |- ( m = ( n + 1 ) -> ( ( k e. Z |-> A ) ` m ) = ( ( k e. Z |-> A ) ` ( n + 1 ) ) ) |
|
| 112 | 99 110 111 | fsump1 | |- ( ( ph /\ n e. Z ) -> sum_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> A ) ` m ) = ( sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) + ( ( k e. Z |-> A ) ` ( n + 1 ) ) ) ) |
| 113 | 112 | fveq2d | |- ( ( ph /\ n e. Z ) -> ( exp ` sum_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> A ) ` m ) ) = ( exp ` ( sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) + ( ( k e. Z |-> A ) ` ( n + 1 ) ) ) ) ) |
| 114 | fzfid | |- ( ( ph /\ n e. Z ) -> ( M ... n ) e. Fin ) |
|
| 115 | elfzuz | |- ( m e. ( M ... n ) -> m e. ( ZZ>= ` M ) ) |
|
| 116 | 115 1 | eleqtrrdi | |- ( m e. ( M ... n ) -> m e. Z ) |
| 117 | 116 108 | sylan2 | |- ( ( ph /\ m e. ( M ... n ) ) -> ( ( k e. Z |-> A ) ` m ) e. CC ) |
| 118 | 117 | adantlr | |- ( ( ( ph /\ n e. Z ) /\ m e. ( M ... n ) ) -> ( ( k e. Z |-> A ) ` m ) e. CC ) |
| 119 | 114 118 | fsumcl | |- ( ( ph /\ n e. Z ) -> sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) e. CC ) |
| 120 | 56 | ffvelcdmda | |- ( ( ph /\ ( n + 1 ) e. Z ) -> ( ( k e. Z |-> A ) ` ( n + 1 ) ) e. CC ) |
| 121 | 76 120 | sylan2 | |- ( ( ph /\ n e. Z ) -> ( ( k e. Z |-> A ) ` ( n + 1 ) ) e. CC ) |
| 122 | efadd | |- ( ( sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) e. CC /\ ( ( k e. Z |-> A ) ` ( n + 1 ) ) e. CC ) -> ( exp ` ( sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) + ( ( k e. Z |-> A ) ` ( n + 1 ) ) ) ) = ( ( exp ` sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) ) x. ( exp ` ( ( k e. Z |-> A ) ` ( n + 1 ) ) ) ) ) |
|
| 123 | 119 121 122 | syl2anc | |- ( ( ph /\ n e. Z ) -> ( exp ` ( sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) + ( ( k e. Z |-> A ) ` ( n + 1 ) ) ) ) = ( ( exp ` sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) ) x. ( exp ` ( ( k e. Z |-> A ) ` ( n + 1 ) ) ) ) ) |
| 124 | 113 123 | eqtrd | |- ( ( ph /\ n e. Z ) -> ( exp ` sum_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> A ) ` m ) ) = ( ( exp ` sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) ) x. ( exp ` ( ( k e. Z |-> A ) ` ( n + 1 ) ) ) ) ) |
| 125 | 124 | 3adant3 | |- ( ( ph /\ n e. Z /\ prod_ m e. ( M ... n ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) ) ) -> ( exp ` sum_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> A ) ` m ) ) = ( ( exp ` sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) ) x. ( exp ` ( ( k e. Z |-> A ) ` ( n + 1 ) ) ) ) ) |
| 126 | 97 107 125 | 3eqtr4d | |- ( ( ph /\ n e. Z /\ prod_ m e. ( M ... n ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) ) ) -> prod_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> A ) ` m ) ) ) |
| 127 | 126 | 3exp | |- ( ph -> ( n e. Z -> ( prod_ m e. ( M ... n ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) ) -> prod_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> A ) ` m ) ) ) ) ) |
| 128 | 127 | com12 | |- ( n e. Z -> ( ph -> ( prod_ m e. ( M ... n ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) ) -> prod_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> A ) ` m ) ) ) ) ) |
| 129 | 128 | a2d | |- ( n e. Z -> ( ( ph -> prod_ m e. ( M ... n ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) ) ) -> ( ph -> prod_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> A ) ` m ) ) ) ) ) |
| 130 | 1 | eqcomi | |- ( ZZ>= ` M ) = Z |
| 131 | 129 130 | eleq2s | |- ( n e. ( ZZ>= ` M ) -> ( ( ph -> prod_ m e. ( M ... n ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... n ) ( ( k e. Z |-> A ) ` m ) ) ) -> ( ph -> prod_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... ( n + 1 ) ) ( ( k e. Z |-> A ) ` m ) ) ) ) ) |
| 132 | 10 16 22 28 74 131 | uzind4 | |- ( N e. ( ZZ>= ` M ) -> ( ph -> prod_ m e. ( M ... N ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... N ) ( ( k e. Z |-> A ) ` m ) ) ) ) |
| 133 | 4 132 | mpcom | |- ( ph -> prod_ m e. ( M ... N ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( exp ` sum_ m e. ( M ... N ) ( ( k e. Z |-> A ) ` m ) ) ) |
| 134 | fvres | |- ( m e. ( M ... N ) -> ( ( ( k e. Z |-> ( exp ` A ) ) |` ( M ... N ) ) ` m ) = ( ( k e. Z |-> ( exp ` A ) ) ` m ) ) |
|
| 135 | fzssuz | |- ( M ... N ) C_ ( ZZ>= ` M ) |
|
| 136 | 135 1 | sseqtrri | |- ( M ... N ) C_ Z |
| 137 | resmpt | |- ( ( M ... N ) C_ Z -> ( ( k e. Z |-> ( exp ` A ) ) |` ( M ... N ) ) = ( k e. ( M ... N ) |-> ( exp ` A ) ) ) |
|
| 138 | 136 137 | ax-mp | |- ( ( k e. Z |-> ( exp ` A ) ) |` ( M ... N ) ) = ( k e. ( M ... N ) |-> ( exp ` A ) ) |
| 139 | 138 | fveq1i | |- ( ( ( k e. Z |-> ( exp ` A ) ) |` ( M ... N ) ) ` m ) = ( ( k e. ( M ... N ) |-> ( exp ` A ) ) ` m ) |
| 140 | 134 139 | eqtr3di | |- ( m e. ( M ... N ) -> ( ( k e. Z |-> ( exp ` A ) ) ` m ) = ( ( k e. ( M ... N ) |-> ( exp ` A ) ) ` m ) ) |
| 141 | 140 | prodeq2i | |- prod_ m e. ( M ... N ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = prod_ m e. ( M ... N ) ( ( k e. ( M ... N ) |-> ( exp ` A ) ) ` m ) |
| 142 | prodfc | |- prod_ m e. ( M ... N ) ( ( k e. ( M ... N ) |-> ( exp ` A ) ) ` m ) = prod_ k e. ( M ... N ) ( exp ` A ) |
|
| 143 | 141 142 | eqtri | |- prod_ m e. ( M ... N ) ( ( k e. Z |-> ( exp ` A ) ) ` m ) = prod_ k e. ( M ... N ) ( exp ` A ) |
| 144 | fvres | |- ( m e. ( M ... N ) -> ( ( ( k e. Z |-> A ) |` ( M ... N ) ) ` m ) = ( ( k e. Z |-> A ) ` m ) ) |
|
| 145 | resmpt | |- ( ( M ... N ) C_ Z -> ( ( k e. Z |-> A ) |` ( M ... N ) ) = ( k e. ( M ... N ) |-> A ) ) |
|
| 146 | 136 145 | ax-mp | |- ( ( k e. Z |-> A ) |` ( M ... N ) ) = ( k e. ( M ... N ) |-> A ) |
| 147 | 146 | fveq1i | |- ( ( ( k e. Z |-> A ) |` ( M ... N ) ) ` m ) = ( ( k e. ( M ... N ) |-> A ) ` m ) |
| 148 | 144 147 | eqtr3di | |- ( m e. ( M ... N ) -> ( ( k e. Z |-> A ) ` m ) = ( ( k e. ( M ... N ) |-> A ) ` m ) ) |
| 149 | 148 | sumeq2i | |- sum_ m e. ( M ... N ) ( ( k e. Z |-> A ) ` m ) = sum_ m e. ( M ... N ) ( ( k e. ( M ... N ) |-> A ) ` m ) |
| 150 | sumfc | |- sum_ m e. ( M ... N ) ( ( k e. ( M ... N ) |-> A ) ` m ) = sum_ k e. ( M ... N ) A |
|
| 151 | 149 150 | eqtri | |- sum_ m e. ( M ... N ) ( ( k e. Z |-> A ) ` m ) = sum_ k e. ( M ... N ) A |
| 152 | 151 | fveq2i | |- ( exp ` sum_ m e. ( M ... N ) ( ( k e. Z |-> A ) ` m ) ) = ( exp ` sum_ k e. ( M ... N ) A ) |
| 153 | 133 143 152 | 3eqtr3g | |- ( ph -> prod_ k e. ( M ... N ) ( exp ` A ) = ( exp ` sum_ k e. ( M ... N ) A ) ) |