This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiply in the last term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodp1.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| fprodp1.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → 𝐴 ∈ ℂ ) | ||
| fprodp1.3 | ⊢ ( 𝑘 = ( 𝑁 + 1 ) → 𝐴 = 𝐵 ) | ||
| Assertion | fprodp1 | ⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐴 = ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodp1.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | fprodp1.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → 𝐴 ∈ ℂ ) | |
| 3 | fprodp1.3 | ⊢ ( 𝑘 = ( 𝑁 + 1 ) → 𝐴 = 𝐵 ) | |
| 4 | peano2uz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 5 | 1 4 | syl | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 6 | 5 2 3 | fprodm1 | ⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐴 = ( ∏ 𝑘 ∈ ( 𝑀 ... ( ( 𝑁 + 1 ) − 1 ) ) 𝐴 · 𝐵 ) ) |
| 7 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 9 | 8 | zcnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 10 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 11 | 9 10 | pncand | ⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 12 | 11 | oveq2d | ⊢ ( 𝜑 → ( 𝑀 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 𝑀 ... 𝑁 ) ) |
| 13 | 12 | prodeq1d | ⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... ( ( 𝑁 + 1 ) − 1 ) ) 𝐴 = ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) |
| 14 | 13 | oveq1d | ⊢ ( 𝜑 → ( ∏ 𝑘 ∈ ( 𝑀 ... ( ( 𝑁 + 1 ) − 1 ) ) 𝐴 · 𝐵 ) = ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 · 𝐵 ) ) |
| 15 | 6 14 | eqtrd | ⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐴 = ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 · 𝐵 ) ) |