This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a product over a nonempty finite set. (Contributed by Scott Fenton, 6-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprod.1 | ⊢ ( 𝑘 = ( 𝐹 ‘ 𝑛 ) → 𝐵 = 𝐶 ) | |
| fprod.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | ||
| fprod.3 | ⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ) | ||
| fprod.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| fprod.5 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑛 ) = 𝐶 ) | ||
| Assertion | fprod | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprod.1 | ⊢ ( 𝑘 = ( 𝐹 ‘ 𝑛 ) → 𝐵 = 𝐶 ) | |
| 2 | fprod.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| 3 | fprod.3 | ⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ) | |
| 4 | fprod.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 5 | fprod.5 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑛 ) = 𝐶 ) | |
| 6 | df-prod | ⊢ ∏ 𝑘 ∈ 𝐴 𝐵 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) | |
| 7 | fvex | ⊢ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ∈ V | |
| 8 | nfcv | ⊢ Ⅎ 𝑗 if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) | |
| 9 | nfv | ⊢ Ⅎ 𝑘 𝑗 ∈ 𝐴 | |
| 10 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 | |
| 11 | nfcv | ⊢ Ⅎ 𝑘 1 | |
| 12 | 9 10 11 | nfif | ⊢ Ⅎ 𝑘 if ( 𝑗 ∈ 𝐴 , ⦋ 𝑗 / 𝑘 ⦌ 𝐵 , 1 ) |
| 13 | eleq1w | ⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴 ) ) | |
| 14 | csbeq1a | ⊢ ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) | |
| 15 | 13 14 | ifbieq1d | ⊢ ( 𝑘 = 𝑗 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = if ( 𝑗 ∈ 𝐴 , ⦋ 𝑗 / 𝑘 ⦌ 𝐵 , 1 ) ) |
| 16 | 8 12 15 | cbvmpt | ⊢ ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) = ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , ⦋ 𝑗 / 𝑘 ⦌ 𝐵 , 1 ) ) |
| 17 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 18 | 10 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ |
| 19 | 14 | eleq1d | ⊢ ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 20 | 18 19 | rspc | ⊢ ( 𝑗 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 21 | 17 20 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 22 | fveq2 | ⊢ ( 𝑛 = 𝑖 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑖 ) ) | |
| 23 | 22 | csbeq1d | ⊢ ( 𝑛 = 𝑖 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑖 ) / 𝑘 ⦌ 𝐵 ) |
| 24 | csbcow | ⊢ ⦋ ( 𝑓 ‘ 𝑖 ) / 𝑗 ⦌ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑖 ) / 𝑘 ⦌ 𝐵 | |
| 25 | 23 24 | eqtr4di | ⊢ ( 𝑛 = 𝑖 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑖 ) / 𝑗 ⦌ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 26 | 25 | cbvmptv | ⊢ ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑖 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑖 ) / 𝑗 ⦌ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 27 | 16 21 26 | prodmo | ⊢ ( 𝜑 → ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
| 28 | f1of | ⊢ ( 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 → 𝐹 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) | |
| 29 | 3 28 | syl | ⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) |
| 30 | ovex | ⊢ ( 1 ... 𝑀 ) ∈ V | |
| 31 | fex | ⊢ ( ( 𝐹 : ( 1 ... 𝑀 ) ⟶ 𝐴 ∧ ( 1 ... 𝑀 ) ∈ V ) → 𝐹 ∈ V ) | |
| 32 | 29 30 31 | sylancl | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 33 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 34 | 2 33 | eleqtrdi | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 35 | elfznn | ⊢ ( 𝑛 ∈ ( 1 ... 𝑀 ) → 𝑛 ∈ ℕ ) | |
| 36 | fvex | ⊢ ( 𝐺 ‘ 𝑛 ) ∈ V | |
| 37 | 5 36 | eqeltrrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → 𝐶 ∈ V ) |
| 38 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ 𝐶 ) = ( 𝑛 ∈ ℕ ↦ 𝐶 ) | |
| 39 | 38 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐶 ∈ V ) → ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑛 ) = 𝐶 ) |
| 40 | 35 37 39 | syl2an2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑛 ) = 𝐶 ) |
| 41 | 5 40 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑛 ) ) |
| 42 | 41 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 1 ... 𝑀 ) ( 𝐺 ‘ 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑛 ) ) |
| 43 | nffvmpt1 | ⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑘 ) | |
| 44 | 43 | nfeq2 | ⊢ Ⅎ 𝑛 ( 𝐺 ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑘 ) |
| 45 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 46 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑘 ) ) | |
| 47 | 45 46 | eqeq12d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝐺 ‘ 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑛 ) ↔ ( 𝐺 ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑘 ) ) ) |
| 48 | 44 47 | rspc | ⊢ ( 𝑘 ∈ ( 1 ... 𝑀 ) → ( ∀ 𝑛 ∈ ( 1 ... 𝑀 ) ( 𝐺 ‘ 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑛 ) → ( 𝐺 ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑘 ) ) ) |
| 49 | 42 48 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑘 ) ) |
| 50 | 34 49 | seqfveq | ⊢ ( 𝜑 → ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ 𝐶 ) ) ‘ 𝑀 ) ) |
| 51 | 3 50 | jca | ⊢ ( 𝜑 → ( 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ 𝐶 ) ) ‘ 𝑀 ) ) ) |
| 52 | f1oeq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ↔ 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ) ) | |
| 53 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 54 | 53 | csbeq1d | ⊢ ( 𝑓 = 𝐹 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
| 55 | fvex | ⊢ ( 𝐹 ‘ 𝑛 ) ∈ V | |
| 56 | 55 1 | csbie | ⊢ ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = 𝐶 |
| 57 | 54 56 | eqtrdi | ⊢ ( 𝑓 = 𝐹 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = 𝐶 ) |
| 58 | 57 | mpteq2dv | ⊢ ( 𝑓 = 𝐹 → ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑛 ∈ ℕ ↦ 𝐶 ) ) |
| 59 | 58 | seqeq3d | ⊢ ( 𝑓 = 𝐹 → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) = seq 1 ( · , ( 𝑛 ∈ ℕ ↦ 𝐶 ) ) ) |
| 60 | 59 | fveq1d | ⊢ ( 𝑓 = 𝐹 → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ 𝐶 ) ) ‘ 𝑀 ) ) |
| 61 | 60 | eqeq2d | ⊢ ( 𝑓 = 𝐹 → ( ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ↔ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ 𝐶 ) ) ‘ 𝑀 ) ) ) |
| 62 | 52 61 | anbi12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ) ↔ ( 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ 𝐶 ) ) ‘ 𝑀 ) ) ) ) |
| 63 | 32 51 62 | spcedv | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ) ) |
| 64 | oveq2 | ⊢ ( 𝑚 = 𝑀 → ( 1 ... 𝑚 ) = ( 1 ... 𝑀 ) ) | |
| 65 | 64 | f1oeq2d | ⊢ ( 𝑚 = 𝑀 → ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ↔ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ) ) |
| 66 | fveq2 | ⊢ ( 𝑚 = 𝑀 → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ) | |
| 67 | 66 | eqeq2d | ⊢ ( 𝑚 = 𝑀 → ( ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ↔ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ) ) |
| 68 | 65 67 | anbi12d | ⊢ ( 𝑚 = 𝑀 → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ) ) ) |
| 69 | 68 | exbidv | ⊢ ( 𝑚 = 𝑀 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ) ) ) |
| 70 | 69 | rspcev | ⊢ ( ( 𝑀 ∈ ℕ ∧ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ) ) → ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) |
| 71 | 2 63 70 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) |
| 72 | 71 | olcd | ⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
| 73 | breq2 | ⊢ ( 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) → ( seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ↔ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ) ) | |
| 74 | 73 | 3anbi3d | ⊢ ( 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ↔ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ) ) ) |
| 75 | 74 | rexbidv | ⊢ ( 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ↔ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ) ) ) |
| 76 | eqeq1 | ⊢ ( 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) → ( 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ↔ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) | |
| 77 | 76 | anbi2d | ⊢ ( 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
| 78 | 77 | exbidv | ⊢ ( 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
| 79 | 78 | rexbidv | ⊢ ( 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
| 80 | 75 79 | orbi12d | ⊢ ( 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ↔ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) ) |
| 81 | 80 | moi2 | ⊢ ( ( ( ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ∈ V ∧ ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) ∧ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) ) → 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ) |
| 82 | 7 81 | mpanl1 | ⊢ ( ( ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ∧ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) ) → 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ) |
| 83 | 82 | ancom2s | ⊢ ( ( ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ∧ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) ) → 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ) |
| 84 | 83 | expr | ⊢ ( ( ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) → 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ) ) |
| 85 | 27 72 84 | syl2anc | ⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) → 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ) ) |
| 86 | 72 80 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) ) |
| 87 | 85 86 | impbid | ⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ↔ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ) ) |
| 88 | 87 | adantr | ⊢ ( ( 𝜑 ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ∈ V ) → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ↔ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ) ) |
| 89 | 88 | iota5 | ⊢ ( ( 𝜑 ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ∈ V ) → ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) = ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ) |
| 90 | 7 89 | mpan2 | ⊢ ( 𝜑 → ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) = ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ) |
| 91 | 6 90 | eqtrid | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ) |