This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A method for computing iota. (Contributed by NM, 17-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iota5.1 | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ( 𝜓 ↔ 𝑥 = 𝐴 ) ) | |
| Assertion | iota5 | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ( ℩ 𝑥 𝜓 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota5.1 | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ( 𝜓 ↔ 𝑥 = 𝐴 ) ) | |
| 2 | 1 | alrimiv | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝐴 ) ) |
| 3 | eqeq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) | |
| 4 | 3 | bibi2d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝜓 ↔ 𝑥 = 𝑦 ) ↔ ( 𝜓 ↔ 𝑥 = 𝐴 ) ) ) |
| 5 | 4 | albidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝐴 ) ) ) |
| 6 | eqeq2 | ⊢ ( 𝑦 = 𝐴 → ( ( ℩ 𝑥 𝜓 ) = 𝑦 ↔ ( ℩ 𝑥 𝜓 ) = 𝐴 ) ) | |
| 7 | 5 6 | imbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 𝜓 ) = 𝑦 ) ↔ ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝐴 ) → ( ℩ 𝑥 𝜓 ) = 𝐴 ) ) ) |
| 8 | iotaval | ⊢ ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 𝜓 ) = 𝑦 ) | |
| 9 | 7 8 | vtoclg | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝐴 ) → ( ℩ 𝑥 𝜓 ) = 𝐴 ) ) |
| 10 | 9 | adantl | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝐴 ) → ( ℩ 𝑥 𝜓 ) = 𝐴 ) ) |
| 11 | 2 10 | mpd | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ( ℩ 𝑥 𝜓 ) = 𝐴 ) |