This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function restricted to a singleton. (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funressn | ⊢ ( Fun 𝐹 → ( 𝐹 ↾ { 𝐵 } ) ⊆ { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn | ⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) | |
| 2 | fnressn | ⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝐵 ∈ dom 𝐹 ) → ( 𝐹 ↾ { 𝐵 } ) = { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) | |
| 3 | 1 2 | sylanb | ⊢ ( ( Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹 ) → ( 𝐹 ↾ { 𝐵 } ) = { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) |
| 4 | eqimss | ⊢ ( ( 𝐹 ↾ { 𝐵 } ) = { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } → ( 𝐹 ↾ { 𝐵 } ) ⊆ { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) | |
| 5 | 3 4 | syl | ⊢ ( ( Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹 ) → ( 𝐹 ↾ { 𝐵 } ) ⊆ { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) |
| 6 | disjsn | ⊢ ( ( dom 𝐹 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐹 ) | |
| 7 | fnresdisj | ⊢ ( 𝐹 Fn dom 𝐹 → ( ( dom 𝐹 ∩ { 𝐵 } ) = ∅ ↔ ( 𝐹 ↾ { 𝐵 } ) = ∅ ) ) | |
| 8 | 1 7 | sylbi | ⊢ ( Fun 𝐹 → ( ( dom 𝐹 ∩ { 𝐵 } ) = ∅ ↔ ( 𝐹 ↾ { 𝐵 } ) = ∅ ) ) |
| 9 | 6 8 | bitr3id | ⊢ ( Fun 𝐹 → ( ¬ 𝐵 ∈ dom 𝐹 ↔ ( 𝐹 ↾ { 𝐵 } ) = ∅ ) ) |
| 10 | 9 | biimpa | ⊢ ( ( Fun 𝐹 ∧ ¬ 𝐵 ∈ dom 𝐹 ) → ( 𝐹 ↾ { 𝐵 } ) = ∅ ) |
| 11 | 0ss | ⊢ ∅ ⊆ { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } | |
| 12 | 10 11 | eqsstrdi | ⊢ ( ( Fun 𝐹 ∧ ¬ 𝐵 ∈ dom 𝐹 ) → ( 𝐹 ↾ { 𝐵 } ) ⊆ { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) |
| 13 | 5 12 | pm2.61dan | ⊢ ( Fun 𝐹 → ( 𝐹 ↾ { 𝐵 } ) ⊆ { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) |