This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move floor function between strict and non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flflp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ↔ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flltp1 | ⊢ ( 𝐴 ∈ ℝ → 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) | |
| 2 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ∧ 𝐵 < 𝐴 ) → 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
| 3 | flval | ⊢ ( 𝐵 ∈ ℝ → ( ⌊ ‘ 𝐵 ) = ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐵 ∧ 𝐵 < ( 𝑥 + 1 ) ) ) ) | |
| 4 | 3 | ad3antlr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐵 ) = ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐵 ∧ 𝐵 < ( 𝑥 + 1 ) ) ) ) |
| 5 | simplr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) | |
| 6 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
| 7 | reflcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) | |
| 8 | peano2re | ⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 11 | lttr | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) → ( ( 𝐵 < 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) → 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) | |
| 12 | 10 11 | mpd3an3 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐵 < 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) → 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
| 13 | 12 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵 < 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) → 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
| 14 | 6 13 | mpan2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < 𝐴 → 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
| 15 | 14 | imp | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
| 16 | 15 | adantlr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ∧ 𝐵 < 𝐴 ) → 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
| 17 | flcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) | |
| 18 | rebtwnz | ⊢ ( 𝐵 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐵 ∧ 𝐵 < ( 𝑥 + 1 ) ) ) | |
| 19 | breq1 | ⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( 𝑥 ≤ 𝐵 ↔ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ) | |
| 20 | oveq1 | ⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( 𝑥 + 1 ) = ( ( ⌊ ‘ 𝐴 ) + 1 ) ) | |
| 21 | 20 | breq2d | ⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( 𝐵 < ( 𝑥 + 1 ) ↔ 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
| 22 | 19 21 | anbi12d | ⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( ( 𝑥 ≤ 𝐵 ∧ 𝐵 < ( 𝑥 + 1 ) ) ↔ ( ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ∧ 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
| 23 | 22 | riota2 | ⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐵 ∧ 𝐵 < ( 𝑥 + 1 ) ) ) → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ∧ 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐵 ∧ 𝐵 < ( 𝑥 + 1 ) ) ) = ( ⌊ ‘ 𝐴 ) ) ) |
| 24 | 17 18 23 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ∧ 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐵 ∧ 𝐵 < ( 𝑥 + 1 ) ) ) = ( ⌊ ‘ 𝐴 ) ) ) |
| 25 | 24 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ∧ 𝐵 < 𝐴 ) → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ∧ 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐵 ∧ 𝐵 < ( 𝑥 + 1 ) ) ) = ( ⌊ ‘ 𝐴 ) ) ) |
| 26 | 5 16 25 | mpbi2and | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ∧ 𝐵 < 𝐴 ) → ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐵 ∧ 𝐵 < ( 𝑥 + 1 ) ) ) = ( ⌊ ‘ 𝐴 ) ) |
| 27 | 4 26 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐵 ) = ( ⌊ ‘ 𝐴 ) ) |
| 28 | 27 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ∧ 𝐵 < 𝐴 ) → ( ( ⌊ ‘ 𝐵 ) + 1 ) = ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
| 29 | 2 28 | breqtrrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ∧ 𝐵 < 𝐴 ) → 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) |
| 30 | 29 | ex | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) → ( 𝐵 < 𝐴 → 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ) |
| 31 | lenlt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) | |
| 32 | flltp1 | ⊢ ( 𝐵 ∈ ℝ → 𝐵 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) | |
| 33 | 32 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) |
| 34 | reflcl | ⊢ ( 𝐵 ∈ ℝ → ( ⌊ ‘ 𝐵 ) ∈ ℝ ) | |
| 35 | peano2re | ⊢ ( ( ⌊ ‘ 𝐵 ) ∈ ℝ → ( ( ⌊ ‘ 𝐵 ) + 1 ) ∈ ℝ ) | |
| 36 | 34 35 | syl | ⊢ ( 𝐵 ∈ ℝ → ( ( ⌊ ‘ 𝐵 ) + 1 ) ∈ ℝ ) |
| 37 | 36 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ⌊ ‘ 𝐵 ) + 1 ) ∈ ℝ ) |
| 38 | lelttr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( ( ⌊ ‘ 𝐵 ) + 1 ) ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) → 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ) | |
| 39 | 37 38 | mpd3an3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) → 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ) |
| 40 | 33 39 | mpan2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ) |
| 41 | 31 40 | sylbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ¬ 𝐵 < 𝐴 → 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ) |
| 42 | 41 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) → ( ¬ 𝐵 < 𝐴 → 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ) |
| 43 | 30 42 | pm2.61d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) → 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) |
| 44 | flval | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) ) | |
| 45 | 44 | ad3antrrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) ) |
| 46 | 34 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐵 ) ∈ ℝ ) |
| 47 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → 𝐴 ∈ ℝ ) | |
| 48 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 49 | flle | ⊢ ( 𝐵 ∈ ℝ → ( ⌊ ‘ 𝐵 ) ≤ 𝐵 ) | |
| 50 | 49 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐵 ) ≤ 𝐵 ) |
| 51 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → 𝐵 < 𝐴 ) | |
| 52 | 46 48 47 50 51 | lelttrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐵 ) < 𝐴 ) |
| 53 | 46 47 52 | ltled | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐵 ) ≤ 𝐴 ) |
| 54 | 53 | adantlr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐵 ) ≤ 𝐴 ) |
| 55 | simplr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ∧ 𝐵 < 𝐴 ) → 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) | |
| 56 | flcl | ⊢ ( 𝐵 ∈ ℝ → ( ⌊ ‘ 𝐵 ) ∈ ℤ ) | |
| 57 | rebtwnz | ⊢ ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) | |
| 58 | breq1 | ⊢ ( 𝑥 = ( ⌊ ‘ 𝐵 ) → ( 𝑥 ≤ 𝐴 ↔ ( ⌊ ‘ 𝐵 ) ≤ 𝐴 ) ) | |
| 59 | oveq1 | ⊢ ( 𝑥 = ( ⌊ ‘ 𝐵 ) → ( 𝑥 + 1 ) = ( ( ⌊ ‘ 𝐵 ) + 1 ) ) | |
| 60 | 59 | breq2d | ⊢ ( 𝑥 = ( ⌊ ‘ 𝐵 ) → ( 𝐴 < ( 𝑥 + 1 ) ↔ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ) |
| 61 | 58 60 | anbi12d | ⊢ ( 𝑥 = ( ⌊ ‘ 𝐵 ) → ( ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ↔ ( ( ⌊ ‘ 𝐵 ) ≤ 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ) ) |
| 62 | 61 | riota2 | ⊢ ( ( ( ⌊ ‘ 𝐵 ) ∈ ℤ ∧ ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) → ( ( ( ⌊ ‘ 𝐵 ) ≤ 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) = ( ⌊ ‘ 𝐵 ) ) ) |
| 63 | 56 57 62 | syl2anr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( ⌊ ‘ 𝐵 ) ≤ 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) = ( ⌊ ‘ 𝐵 ) ) ) |
| 64 | 63 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ∧ 𝐵 < 𝐴 ) → ( ( ( ⌊ ‘ 𝐵 ) ≤ 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) = ( ⌊ ‘ 𝐵 ) ) ) |
| 65 | 54 55 64 | mpbi2and | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ∧ 𝐵 < 𝐴 ) → ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) = ( ⌊ ‘ 𝐵 ) ) |
| 66 | 45 65 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐴 ) = ( ⌊ ‘ 𝐵 ) ) |
| 67 | 49 | ad3antlr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐵 ) ≤ 𝐵 ) |
| 68 | 66 67 | eqbrtrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) |
| 69 | 68 | ex | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) → ( 𝐵 < 𝐴 → ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ) |
| 70 | flle | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) | |
| 71 | 70 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
| 72 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
| 73 | letr | ⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ) | |
| 74 | 73 | 3coml | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ℝ ) → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ) |
| 75 | 72 74 | mpd3an3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ) |
| 76 | 71 75 | mpand | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ) |
| 77 | 31 76 | sylbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ¬ 𝐵 < 𝐴 → ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ) |
| 78 | 77 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) → ( ¬ 𝐵 < 𝐴 → ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ) |
| 79 | 69 78 | pm2.61d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) |
| 80 | 43 79 | impbida | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ↔ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ) |