This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a unique greatest integer less than or equal to a real number. Exercise 4 of Apostol p. 28. (Contributed by NM, 15-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rebtwnz | ⊢ ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 2 | zbtwnre | ⊢ ( - 𝐴 ∈ ℝ → ∃! 𝑦 ∈ ℤ ( - 𝐴 ≤ 𝑦 ∧ 𝑦 < ( - 𝐴 + 1 ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ℝ → ∃! 𝑦 ∈ ℤ ( - 𝐴 ≤ 𝑦 ∧ 𝑦 < ( - 𝐴 + 1 ) ) ) |
| 4 | znegcl | ⊢ ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ ) | |
| 5 | znegcl | ⊢ ( 𝑦 ∈ ℤ → - 𝑦 ∈ ℤ ) | |
| 6 | zcn | ⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ ) | |
| 7 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 8 | negcon2 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑦 = - 𝑥 ↔ 𝑥 = - 𝑦 ) ) | |
| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝑦 = - 𝑥 ↔ 𝑥 = - 𝑦 ) ) |
| 10 | 5 9 | reuhyp | ⊢ ( 𝑦 ∈ ℤ → ∃! 𝑥 ∈ ℤ 𝑦 = - 𝑥 ) |
| 11 | breq2 | ⊢ ( 𝑦 = - 𝑥 → ( - 𝐴 ≤ 𝑦 ↔ - 𝐴 ≤ - 𝑥 ) ) | |
| 12 | breq1 | ⊢ ( 𝑦 = - 𝑥 → ( 𝑦 < ( - 𝐴 + 1 ) ↔ - 𝑥 < ( - 𝐴 + 1 ) ) ) | |
| 13 | 11 12 | anbi12d | ⊢ ( 𝑦 = - 𝑥 → ( ( - 𝐴 ≤ 𝑦 ∧ 𝑦 < ( - 𝐴 + 1 ) ) ↔ ( - 𝐴 ≤ - 𝑥 ∧ - 𝑥 < ( - 𝐴 + 1 ) ) ) ) |
| 14 | 4 10 13 | reuxfr1 | ⊢ ( ∃! 𝑦 ∈ ℤ ( - 𝐴 ≤ 𝑦 ∧ 𝑦 < ( - 𝐴 + 1 ) ) ↔ ∃! 𝑥 ∈ ℤ ( - 𝐴 ≤ - 𝑥 ∧ - 𝑥 < ( - 𝐴 + 1 ) ) ) |
| 15 | zre | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℝ ) | |
| 16 | leneg | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑥 ≤ 𝐴 ↔ - 𝐴 ≤ - 𝑥 ) ) | |
| 17 | 16 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ≤ 𝐴 ↔ - 𝐴 ≤ - 𝑥 ) ) |
| 18 | peano2rem | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 − 1 ) ∈ ℝ ) | |
| 19 | ltneg | ⊢ ( ( ( 𝐴 − 1 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 − 1 ) < 𝑥 ↔ - 𝑥 < - ( 𝐴 − 1 ) ) ) | |
| 20 | 18 19 | sylan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 − 1 ) < 𝑥 ↔ - 𝑥 < - ( 𝐴 − 1 ) ) ) |
| 21 | 1re | ⊢ 1 ∈ ℝ | |
| 22 | ltsubadd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 − 1 ) < 𝑥 ↔ 𝐴 < ( 𝑥 + 1 ) ) ) | |
| 23 | 21 22 | mp3an2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 − 1 ) < 𝑥 ↔ 𝐴 < ( 𝑥 + 1 ) ) ) |
| 24 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 25 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 26 | negsubdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → - ( 𝐴 − 1 ) = ( - 𝐴 + 1 ) ) | |
| 27 | 24 25 26 | sylancl | ⊢ ( 𝐴 ∈ ℝ → - ( 𝐴 − 1 ) = ( - 𝐴 + 1 ) ) |
| 28 | 27 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → - ( 𝐴 − 1 ) = ( - 𝐴 + 1 ) ) |
| 29 | 28 | breq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( - 𝑥 < - ( 𝐴 − 1 ) ↔ - 𝑥 < ( - 𝐴 + 1 ) ) ) |
| 30 | 20 23 29 | 3bitr3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐴 < ( 𝑥 + 1 ) ↔ - 𝑥 < ( - 𝐴 + 1 ) ) ) |
| 31 | 17 30 | anbi12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ↔ ( - 𝐴 ≤ - 𝑥 ∧ - 𝑥 < ( - 𝐴 + 1 ) ) ) ) |
| 32 | 15 31 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ↔ ( - 𝐴 ≤ - 𝑥 ∧ - 𝑥 < ( - 𝐴 + 1 ) ) ) ) |
| 33 | 32 | bicomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ( - 𝐴 ≤ - 𝑥 ∧ - 𝑥 < ( - 𝐴 + 1 ) ) ↔ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) ) |
| 34 | 33 | reubidva | ⊢ ( 𝐴 ∈ ℝ → ( ∃! 𝑥 ∈ ℤ ( - 𝐴 ≤ - 𝑥 ∧ - 𝑥 < ( - 𝐴 + 1 ) ) ↔ ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) ) |
| 35 | 14 34 | bitrid | ⊢ ( 𝐴 ∈ ℝ → ( ∃! 𝑦 ∈ ℤ ( - 𝐴 ≤ 𝑦 ∧ 𝑦 < ( - 𝐴 + 1 ) ) ↔ ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) ) |
| 36 | 3 35 | mpbid | ⊢ ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) |