This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move floor function between strict and non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flflp1 | |- ( ( A e. RR /\ B e. RR ) -> ( ( |_ ` A ) <_ B <-> A < ( ( |_ ` B ) + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flltp1 | |- ( A e. RR -> A < ( ( |_ ` A ) + 1 ) ) |
|
| 2 | 1 | ad3antrrr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) <_ B ) /\ B < A ) -> A < ( ( |_ ` A ) + 1 ) ) |
| 3 | flval | |- ( B e. RR -> ( |_ ` B ) = ( iota_ x e. ZZ ( x <_ B /\ B < ( x + 1 ) ) ) ) |
|
| 4 | 3 | ad3antlr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) <_ B ) /\ B < A ) -> ( |_ ` B ) = ( iota_ x e. ZZ ( x <_ B /\ B < ( x + 1 ) ) ) ) |
| 5 | simplr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) <_ B ) /\ B < A ) -> ( |_ ` A ) <_ B ) |
|
| 6 | 1 | adantr | |- ( ( A e. RR /\ B e. RR ) -> A < ( ( |_ ` A ) + 1 ) ) |
| 7 | reflcl | |- ( A e. RR -> ( |_ ` A ) e. RR ) |
|
| 8 | peano2re | |- ( ( |_ ` A ) e. RR -> ( ( |_ ` A ) + 1 ) e. RR ) |
|
| 9 | 7 8 | syl | |- ( A e. RR -> ( ( |_ ` A ) + 1 ) e. RR ) |
| 10 | 9 | adantl | |- ( ( B e. RR /\ A e. RR ) -> ( ( |_ ` A ) + 1 ) e. RR ) |
| 11 | lttr | |- ( ( B e. RR /\ A e. RR /\ ( ( |_ ` A ) + 1 ) e. RR ) -> ( ( B < A /\ A < ( ( |_ ` A ) + 1 ) ) -> B < ( ( |_ ` A ) + 1 ) ) ) |
|
| 12 | 10 11 | mpd3an3 | |- ( ( B e. RR /\ A e. RR ) -> ( ( B < A /\ A < ( ( |_ ` A ) + 1 ) ) -> B < ( ( |_ ` A ) + 1 ) ) ) |
| 13 | 12 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> ( ( B < A /\ A < ( ( |_ ` A ) + 1 ) ) -> B < ( ( |_ ` A ) + 1 ) ) ) |
| 14 | 6 13 | mpan2d | |- ( ( A e. RR /\ B e. RR ) -> ( B < A -> B < ( ( |_ ` A ) + 1 ) ) ) |
| 15 | 14 | imp | |- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> B < ( ( |_ ` A ) + 1 ) ) |
| 16 | 15 | adantlr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) <_ B ) /\ B < A ) -> B < ( ( |_ ` A ) + 1 ) ) |
| 17 | flcl | |- ( A e. RR -> ( |_ ` A ) e. ZZ ) |
|
| 18 | rebtwnz | |- ( B e. RR -> E! x e. ZZ ( x <_ B /\ B < ( x + 1 ) ) ) |
|
| 19 | breq1 | |- ( x = ( |_ ` A ) -> ( x <_ B <-> ( |_ ` A ) <_ B ) ) |
|
| 20 | oveq1 | |- ( x = ( |_ ` A ) -> ( x + 1 ) = ( ( |_ ` A ) + 1 ) ) |
|
| 21 | 20 | breq2d | |- ( x = ( |_ ` A ) -> ( B < ( x + 1 ) <-> B < ( ( |_ ` A ) + 1 ) ) ) |
| 22 | 19 21 | anbi12d | |- ( x = ( |_ ` A ) -> ( ( x <_ B /\ B < ( x + 1 ) ) <-> ( ( |_ ` A ) <_ B /\ B < ( ( |_ ` A ) + 1 ) ) ) ) |
| 23 | 22 | riota2 | |- ( ( ( |_ ` A ) e. ZZ /\ E! x e. ZZ ( x <_ B /\ B < ( x + 1 ) ) ) -> ( ( ( |_ ` A ) <_ B /\ B < ( ( |_ ` A ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ B /\ B < ( x + 1 ) ) ) = ( |_ ` A ) ) ) |
| 24 | 17 18 23 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( |_ ` A ) <_ B /\ B < ( ( |_ ` A ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ B /\ B < ( x + 1 ) ) ) = ( |_ ` A ) ) ) |
| 25 | 24 | ad2antrr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) <_ B ) /\ B < A ) -> ( ( ( |_ ` A ) <_ B /\ B < ( ( |_ ` A ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ B /\ B < ( x + 1 ) ) ) = ( |_ ` A ) ) ) |
| 26 | 5 16 25 | mpbi2and | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) <_ B ) /\ B < A ) -> ( iota_ x e. ZZ ( x <_ B /\ B < ( x + 1 ) ) ) = ( |_ ` A ) ) |
| 27 | 4 26 | eqtrd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) <_ B ) /\ B < A ) -> ( |_ ` B ) = ( |_ ` A ) ) |
| 28 | 27 | oveq1d | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) <_ B ) /\ B < A ) -> ( ( |_ ` B ) + 1 ) = ( ( |_ ` A ) + 1 ) ) |
| 29 | 2 28 | breqtrrd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) <_ B ) /\ B < A ) -> A < ( ( |_ ` B ) + 1 ) ) |
| 30 | 29 | ex | |- ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) <_ B ) -> ( B < A -> A < ( ( |_ ` B ) + 1 ) ) ) |
| 31 | lenlt | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> -. B < A ) ) |
|
| 32 | flltp1 | |- ( B e. RR -> B < ( ( |_ ` B ) + 1 ) ) |
|
| 33 | 32 | adantl | |- ( ( A e. RR /\ B e. RR ) -> B < ( ( |_ ` B ) + 1 ) ) |
| 34 | reflcl | |- ( B e. RR -> ( |_ ` B ) e. RR ) |
|
| 35 | peano2re | |- ( ( |_ ` B ) e. RR -> ( ( |_ ` B ) + 1 ) e. RR ) |
|
| 36 | 34 35 | syl | |- ( B e. RR -> ( ( |_ ` B ) + 1 ) e. RR ) |
| 37 | 36 | adantl | |- ( ( A e. RR /\ B e. RR ) -> ( ( |_ ` B ) + 1 ) e. RR ) |
| 38 | lelttr | |- ( ( A e. RR /\ B e. RR /\ ( ( |_ ` B ) + 1 ) e. RR ) -> ( ( A <_ B /\ B < ( ( |_ ` B ) + 1 ) ) -> A < ( ( |_ ` B ) + 1 ) ) ) |
|
| 39 | 37 38 | mpd3an3 | |- ( ( A e. RR /\ B e. RR ) -> ( ( A <_ B /\ B < ( ( |_ ` B ) + 1 ) ) -> A < ( ( |_ ` B ) + 1 ) ) ) |
| 40 | 33 39 | mpan2d | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B -> A < ( ( |_ ` B ) + 1 ) ) ) |
| 41 | 31 40 | sylbird | |- ( ( A e. RR /\ B e. RR ) -> ( -. B < A -> A < ( ( |_ ` B ) + 1 ) ) ) |
| 42 | 41 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) <_ B ) -> ( -. B < A -> A < ( ( |_ ` B ) + 1 ) ) ) |
| 43 | 30 42 | pm2.61d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) <_ B ) -> A < ( ( |_ ` B ) + 1 ) ) |
| 44 | flval | |- ( A e. RR -> ( |_ ` A ) = ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) ) |
|
| 45 | 44 | ad3antrrr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A < ( ( |_ ` B ) + 1 ) ) /\ B < A ) -> ( |_ ` A ) = ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) ) |
| 46 | 34 | ad2antlr | |- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( |_ ` B ) e. RR ) |
| 47 | simpll | |- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> A e. RR ) |
|
| 48 | simplr | |- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> B e. RR ) |
|
| 49 | flle | |- ( B e. RR -> ( |_ ` B ) <_ B ) |
|
| 50 | 49 | ad2antlr | |- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( |_ ` B ) <_ B ) |
| 51 | simpr | |- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> B < A ) |
|
| 52 | 46 48 47 50 51 | lelttrd | |- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( |_ ` B ) < A ) |
| 53 | 46 47 52 | ltled | |- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( |_ ` B ) <_ A ) |
| 54 | 53 | adantlr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A < ( ( |_ ` B ) + 1 ) ) /\ B < A ) -> ( |_ ` B ) <_ A ) |
| 55 | simplr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A < ( ( |_ ` B ) + 1 ) ) /\ B < A ) -> A < ( ( |_ ` B ) + 1 ) ) |
|
| 56 | flcl | |- ( B e. RR -> ( |_ ` B ) e. ZZ ) |
|
| 57 | rebtwnz | |- ( A e. RR -> E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) |
|
| 58 | breq1 | |- ( x = ( |_ ` B ) -> ( x <_ A <-> ( |_ ` B ) <_ A ) ) |
|
| 59 | oveq1 | |- ( x = ( |_ ` B ) -> ( x + 1 ) = ( ( |_ ` B ) + 1 ) ) |
|
| 60 | 59 | breq2d | |- ( x = ( |_ ` B ) -> ( A < ( x + 1 ) <-> A < ( ( |_ ` B ) + 1 ) ) ) |
| 61 | 58 60 | anbi12d | |- ( x = ( |_ ` B ) -> ( ( x <_ A /\ A < ( x + 1 ) ) <-> ( ( |_ ` B ) <_ A /\ A < ( ( |_ ` B ) + 1 ) ) ) ) |
| 62 | 61 | riota2 | |- ( ( ( |_ ` B ) e. ZZ /\ E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) -> ( ( ( |_ ` B ) <_ A /\ A < ( ( |_ ` B ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = ( |_ ` B ) ) ) |
| 63 | 56 57 62 | syl2anr | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( |_ ` B ) <_ A /\ A < ( ( |_ ` B ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = ( |_ ` B ) ) ) |
| 64 | 63 | ad2antrr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A < ( ( |_ ` B ) + 1 ) ) /\ B < A ) -> ( ( ( |_ ` B ) <_ A /\ A < ( ( |_ ` B ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = ( |_ ` B ) ) ) |
| 65 | 54 55 64 | mpbi2and | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A < ( ( |_ ` B ) + 1 ) ) /\ B < A ) -> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = ( |_ ` B ) ) |
| 66 | 45 65 | eqtrd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A < ( ( |_ ` B ) + 1 ) ) /\ B < A ) -> ( |_ ` A ) = ( |_ ` B ) ) |
| 67 | 49 | ad3antlr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A < ( ( |_ ` B ) + 1 ) ) /\ B < A ) -> ( |_ ` B ) <_ B ) |
| 68 | 66 67 | eqbrtrd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A < ( ( |_ ` B ) + 1 ) ) /\ B < A ) -> ( |_ ` A ) <_ B ) |
| 69 | 68 | ex | |- ( ( ( A e. RR /\ B e. RR ) /\ A < ( ( |_ ` B ) + 1 ) ) -> ( B < A -> ( |_ ` A ) <_ B ) ) |
| 70 | flle | |- ( A e. RR -> ( |_ ` A ) <_ A ) |
|
| 71 | 70 | adantr | |- ( ( A e. RR /\ B e. RR ) -> ( |_ ` A ) <_ A ) |
| 72 | 7 | adantr | |- ( ( A e. RR /\ B e. RR ) -> ( |_ ` A ) e. RR ) |
| 73 | letr | |- ( ( ( |_ ` A ) e. RR /\ A e. RR /\ B e. RR ) -> ( ( ( |_ ` A ) <_ A /\ A <_ B ) -> ( |_ ` A ) <_ B ) ) |
|
| 74 | 73 | 3coml | |- ( ( A e. RR /\ B e. RR /\ ( |_ ` A ) e. RR ) -> ( ( ( |_ ` A ) <_ A /\ A <_ B ) -> ( |_ ` A ) <_ B ) ) |
| 75 | 72 74 | mpd3an3 | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( |_ ` A ) <_ A /\ A <_ B ) -> ( |_ ` A ) <_ B ) ) |
| 76 | 71 75 | mpand | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B -> ( |_ ` A ) <_ B ) ) |
| 77 | 31 76 | sylbird | |- ( ( A e. RR /\ B e. RR ) -> ( -. B < A -> ( |_ ` A ) <_ B ) ) |
| 78 | 77 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ A < ( ( |_ ` B ) + 1 ) ) -> ( -. B < A -> ( |_ ` A ) <_ B ) ) |
| 79 | 69 78 | pm2.61d | |- ( ( ( A e. RR /\ B e. RR ) /\ A < ( ( |_ ` B ) + 1 ) ) -> ( |_ ` A ) <_ B ) |
| 80 | 43 79 | impbida | |- ( ( A e. RR /\ B e. RR ) -> ( ( |_ ` A ) <_ B <-> A < ( ( |_ ` B ) + 1 ) ) ) |