This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: According to df-subc , the subcategories ( SubcatC ) of a category C are subsets of the homomorphisms of C (see subcssc and subcss2 ). Therefore, the set of field homomorphisms is a "subcategory" of the category of division rings. (Contributed by AV, 20-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drhmsubc.c | ⊢ 𝐶 = ( 𝑈 ∩ DivRing ) | |
| drhmsubc.j | ⊢ 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) | ||
| fldhmsubc.d | ⊢ 𝐷 = ( 𝑈 ∩ Field ) | ||
| fldhmsubc.f | ⊢ 𝐹 = ( 𝑟 ∈ 𝐷 , 𝑠 ∈ 𝐷 ↦ ( 𝑟 RingHom 𝑠 ) ) | ||
| Assertion | fldhmsubc | ⊢ ( 𝑈 ∈ 𝑉 → 𝐹 ∈ ( Subcat ‘ ( ( RingCat ‘ 𝑈 ) ↾cat 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drhmsubc.c | ⊢ 𝐶 = ( 𝑈 ∩ DivRing ) | |
| 2 | drhmsubc.j | ⊢ 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) | |
| 3 | fldhmsubc.d | ⊢ 𝐷 = ( 𝑈 ∩ Field ) | |
| 4 | fldhmsubc.f | ⊢ 𝐹 = ( 𝑟 ∈ 𝐷 , 𝑠 ∈ 𝐷 ↦ ( 𝑟 RingHom 𝑠 ) ) | |
| 5 | elin | ⊢ ( 𝑟 ∈ ( DivRing ∩ CRing ) ↔ ( 𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing ) ) | |
| 6 | 5 | simprbi | ⊢ ( 𝑟 ∈ ( DivRing ∩ CRing ) → 𝑟 ∈ CRing ) |
| 7 | crngring | ⊢ ( 𝑟 ∈ CRing → 𝑟 ∈ Ring ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑟 ∈ ( DivRing ∩ CRing ) → 𝑟 ∈ Ring ) |
| 9 | df-field | ⊢ Field = ( DivRing ∩ CRing ) | |
| 10 | 8 9 | eleq2s | ⊢ ( 𝑟 ∈ Field → 𝑟 ∈ Ring ) |
| 11 | 10 | rgen | ⊢ ∀ 𝑟 ∈ Field 𝑟 ∈ Ring |
| 12 | 11 3 4 | srhmsubc | ⊢ ( 𝑈 ∈ 𝑉 → 𝐹 ∈ ( Subcat ‘ ( RingCat ‘ 𝑈 ) ) ) |
| 13 | inss1 | ⊢ ( DivRing ∩ CRing ) ⊆ DivRing | |
| 14 | 9 13 | eqsstri | ⊢ Field ⊆ DivRing |
| 15 | sslin | ⊢ ( Field ⊆ DivRing → ( 𝑈 ∩ Field ) ⊆ ( 𝑈 ∩ DivRing ) ) | |
| 16 | 14 15 | ax-mp | ⊢ ( 𝑈 ∩ Field ) ⊆ ( 𝑈 ∩ DivRing ) |
| 17 | 16 | a1i | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ Field ) ⊆ ( 𝑈 ∩ DivRing ) ) |
| 18 | 3 1 | sseq12i | ⊢ ( 𝐷 ⊆ 𝐶 ↔ ( 𝑈 ∩ Field ) ⊆ ( 𝑈 ∩ DivRing ) ) |
| 19 | 17 18 | sylibr | ⊢ ( 𝑈 ∈ 𝑉 → 𝐷 ⊆ 𝐶 ) |
| 20 | ssidd | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 RingHom 𝑦 ) ⊆ ( 𝑥 RingHom 𝑦 ) ) | |
| 21 | 4 | a1i | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝐹 = ( 𝑟 ∈ 𝐷 , 𝑠 ∈ 𝐷 ↦ ( 𝑟 RingHom 𝑠 ) ) ) |
| 22 | oveq12 | ⊢ ( ( 𝑟 = 𝑥 ∧ 𝑠 = 𝑦 ) → ( 𝑟 RingHom 𝑠 ) = ( 𝑥 RingHom 𝑦 ) ) | |
| 23 | 22 | adantl | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑟 = 𝑥 ∧ 𝑠 = 𝑦 ) ) → ( 𝑟 RingHom 𝑠 ) = ( 𝑥 RingHom 𝑦 ) ) |
| 24 | simprl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝑥 ∈ 𝐷 ) | |
| 25 | simpr | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ 𝐷 ) | |
| 26 | 25 | adantl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝑦 ∈ 𝐷 ) |
| 27 | ovexd | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 RingHom 𝑦 ) ∈ V ) | |
| 28 | 21 23 24 26 27 | ovmpod | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
| 29 | 2 | a1i | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) ) |
| 30 | 16 18 | mpbir | ⊢ 𝐷 ⊆ 𝐶 |
| 31 | 30 | sseli | ⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ 𝐶 ) |
| 32 | 31 | ad2antrl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝑥 ∈ 𝐶 ) |
| 33 | 30 | sseli | ⊢ ( 𝑦 ∈ 𝐷 → 𝑦 ∈ 𝐶 ) |
| 34 | 33 | adantl | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ 𝐶 ) |
| 35 | 34 | adantl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝑦 ∈ 𝐶 ) |
| 36 | 29 23 32 35 27 | ovmpod | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 𝐽 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
| 37 | 20 28 36 | 3sstr4d | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 𝐹 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) |
| 38 | 37 | ralrimivva | ⊢ ( 𝑈 ∈ 𝑉 → ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 𝐹 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) |
| 39 | ovex | ⊢ ( 𝑟 RingHom 𝑠 ) ∈ V | |
| 40 | 4 39 | fnmpoi | ⊢ 𝐹 Fn ( 𝐷 × 𝐷 ) |
| 41 | 40 | a1i | ⊢ ( 𝑈 ∈ 𝑉 → 𝐹 Fn ( 𝐷 × 𝐷 ) ) |
| 42 | 2 39 | fnmpoi | ⊢ 𝐽 Fn ( 𝐶 × 𝐶 ) |
| 43 | 42 | a1i | ⊢ ( 𝑈 ∈ 𝑉 → 𝐽 Fn ( 𝐶 × 𝐶 ) ) |
| 44 | inex1g | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ DivRing ) ∈ V ) | |
| 45 | 1 44 | eqeltrid | ⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ V ) |
| 46 | 41 43 45 | isssc | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝐹 ⊆cat 𝐽 ↔ ( 𝐷 ⊆ 𝐶 ∧ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 𝐹 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) ) ) |
| 47 | 19 38 46 | mpbir2and | ⊢ ( 𝑈 ∈ 𝑉 → 𝐹 ⊆cat 𝐽 ) |
| 48 | 1 2 | drhmsubc | ⊢ ( 𝑈 ∈ 𝑉 → 𝐽 ∈ ( Subcat ‘ ( RingCat ‘ 𝑈 ) ) ) |
| 49 | eqid | ⊢ ( ( RingCat ‘ 𝑈 ) ↾cat 𝐽 ) = ( ( RingCat ‘ 𝑈 ) ↾cat 𝐽 ) | |
| 50 | 49 | subsubc | ⊢ ( 𝐽 ∈ ( Subcat ‘ ( RingCat ‘ 𝑈 ) ) → ( 𝐹 ∈ ( Subcat ‘ ( ( RingCat ‘ 𝑈 ) ↾cat 𝐽 ) ) ↔ ( 𝐹 ∈ ( Subcat ‘ ( RingCat ‘ 𝑈 ) ) ∧ 𝐹 ⊆cat 𝐽 ) ) ) |
| 51 | 48 50 | syl | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝐹 ∈ ( Subcat ‘ ( ( RingCat ‘ 𝑈 ) ↾cat 𝐽 ) ) ↔ ( 𝐹 ∈ ( Subcat ‘ ( RingCat ‘ 𝑈 ) ) ∧ 𝐹 ⊆cat 𝐽 ) ) ) |
| 52 | 12 47 51 | mpbir2and | ⊢ ( 𝑈 ∈ 𝑉 → 𝐹 ∈ ( Subcat ‘ ( ( RingCat ‘ 𝑈 ) ↾cat 𝐽 ) ) ) |