This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: According to df-subc , the subcategories ( SubcatC ) of a category C are subsets of the homomorphisms of C (see subcssc and subcss2 ). Therefore, the set of field homomorphisms is a "subcategory" of the category of division rings. (Contributed by AV, 20-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drhmsubc.c | |- C = ( U i^i DivRing ) |
|
| drhmsubc.j | |- J = ( r e. C , s e. C |-> ( r RingHom s ) ) |
||
| fldhmsubc.d | |- D = ( U i^i Field ) |
||
| fldhmsubc.f | |- F = ( r e. D , s e. D |-> ( r RingHom s ) ) |
||
| Assertion | fldhmsubc | |- ( U e. V -> F e. ( Subcat ` ( ( RingCat ` U ) |`cat J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drhmsubc.c | |- C = ( U i^i DivRing ) |
|
| 2 | drhmsubc.j | |- J = ( r e. C , s e. C |-> ( r RingHom s ) ) |
|
| 3 | fldhmsubc.d | |- D = ( U i^i Field ) |
|
| 4 | fldhmsubc.f | |- F = ( r e. D , s e. D |-> ( r RingHom s ) ) |
|
| 5 | elin | |- ( r e. ( DivRing i^i CRing ) <-> ( r e. DivRing /\ r e. CRing ) ) |
|
| 6 | 5 | simprbi | |- ( r e. ( DivRing i^i CRing ) -> r e. CRing ) |
| 7 | crngring | |- ( r e. CRing -> r e. Ring ) |
|
| 8 | 6 7 | syl | |- ( r e. ( DivRing i^i CRing ) -> r e. Ring ) |
| 9 | df-field | |- Field = ( DivRing i^i CRing ) |
|
| 10 | 8 9 | eleq2s | |- ( r e. Field -> r e. Ring ) |
| 11 | 10 | rgen | |- A. r e. Field r e. Ring |
| 12 | 11 3 4 | srhmsubc | |- ( U e. V -> F e. ( Subcat ` ( RingCat ` U ) ) ) |
| 13 | inss1 | |- ( DivRing i^i CRing ) C_ DivRing |
|
| 14 | 9 13 | eqsstri | |- Field C_ DivRing |
| 15 | sslin | |- ( Field C_ DivRing -> ( U i^i Field ) C_ ( U i^i DivRing ) ) |
|
| 16 | 14 15 | ax-mp | |- ( U i^i Field ) C_ ( U i^i DivRing ) |
| 17 | 16 | a1i | |- ( U e. V -> ( U i^i Field ) C_ ( U i^i DivRing ) ) |
| 18 | 3 1 | sseq12i | |- ( D C_ C <-> ( U i^i Field ) C_ ( U i^i DivRing ) ) |
| 19 | 17 18 | sylibr | |- ( U e. V -> D C_ C ) |
| 20 | ssidd | |- ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> ( x RingHom y ) C_ ( x RingHom y ) ) |
|
| 21 | 4 | a1i | |- ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> F = ( r e. D , s e. D |-> ( r RingHom s ) ) ) |
| 22 | oveq12 | |- ( ( r = x /\ s = y ) -> ( r RingHom s ) = ( x RingHom y ) ) |
|
| 23 | 22 | adantl | |- ( ( ( U e. V /\ ( x e. D /\ y e. D ) ) /\ ( r = x /\ s = y ) ) -> ( r RingHom s ) = ( x RingHom y ) ) |
| 24 | simprl | |- ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> x e. D ) |
|
| 25 | simpr | |- ( ( x e. D /\ y e. D ) -> y e. D ) |
|
| 26 | 25 | adantl | |- ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> y e. D ) |
| 27 | ovexd | |- ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> ( x RingHom y ) e. _V ) |
|
| 28 | 21 23 24 26 27 | ovmpod | |- ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> ( x F y ) = ( x RingHom y ) ) |
| 29 | 2 | a1i | |- ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> J = ( r e. C , s e. C |-> ( r RingHom s ) ) ) |
| 30 | 16 18 | mpbir | |- D C_ C |
| 31 | 30 | sseli | |- ( x e. D -> x e. C ) |
| 32 | 31 | ad2antrl | |- ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> x e. C ) |
| 33 | 30 | sseli | |- ( y e. D -> y e. C ) |
| 34 | 33 | adantl | |- ( ( x e. D /\ y e. D ) -> y e. C ) |
| 35 | 34 | adantl | |- ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> y e. C ) |
| 36 | 29 23 32 35 27 | ovmpod | |- ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> ( x J y ) = ( x RingHom y ) ) |
| 37 | 20 28 36 | 3sstr4d | |- ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> ( x F y ) C_ ( x J y ) ) |
| 38 | 37 | ralrimivva | |- ( U e. V -> A. x e. D A. y e. D ( x F y ) C_ ( x J y ) ) |
| 39 | ovex | |- ( r RingHom s ) e. _V |
|
| 40 | 4 39 | fnmpoi | |- F Fn ( D X. D ) |
| 41 | 40 | a1i | |- ( U e. V -> F Fn ( D X. D ) ) |
| 42 | 2 39 | fnmpoi | |- J Fn ( C X. C ) |
| 43 | 42 | a1i | |- ( U e. V -> J Fn ( C X. C ) ) |
| 44 | inex1g | |- ( U e. V -> ( U i^i DivRing ) e. _V ) |
|
| 45 | 1 44 | eqeltrid | |- ( U e. V -> C e. _V ) |
| 46 | 41 43 45 | isssc | |- ( U e. V -> ( F C_cat J <-> ( D C_ C /\ A. x e. D A. y e. D ( x F y ) C_ ( x J y ) ) ) ) |
| 47 | 19 38 46 | mpbir2and | |- ( U e. V -> F C_cat J ) |
| 48 | 1 2 | drhmsubc | |- ( U e. V -> J e. ( Subcat ` ( RingCat ` U ) ) ) |
| 49 | eqid | |- ( ( RingCat ` U ) |`cat J ) = ( ( RingCat ` U ) |`cat J ) |
|
| 50 | 49 | subsubc | |- ( J e. ( Subcat ` ( RingCat ` U ) ) -> ( F e. ( Subcat ` ( ( RingCat ` U ) |`cat J ) ) <-> ( F e. ( Subcat ` ( RingCat ` U ) ) /\ F C_cat J ) ) ) |
| 51 | 48 50 | syl | |- ( U e. V -> ( F e. ( Subcat ` ( ( RingCat ` U ) |`cat J ) ) <-> ( F e. ( Subcat ` ( RingCat ` U ) ) /\ F C_cat J ) ) ) |
| 52 | 12 47 51 | mpbir2and | |- ( U e. V -> F e. ( Subcat ` ( ( RingCat ` U ) |`cat J ) ) ) |