This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every V-finite set is VI-finite because multiplication dominates addition for cardinals. (Contributed by Stefan O'Rear, 29-Oct-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin56 | ⊢ ( 𝐴 ∈ FinV → 𝐴 ∈ FinVI ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc | ⊢ ( 𝐴 = ∅ → ( 𝐴 = ∅ ∨ 𝐴 ≈ 1o ) ) | |
| 2 | sdom2en01 | ⊢ ( 𝐴 ≺ 2o ↔ ( 𝐴 = ∅ ∨ 𝐴 ≈ 1o ) ) | |
| 3 | 1 2 | sylibr | ⊢ ( 𝐴 = ∅ → 𝐴 ≺ 2o ) |
| 4 | 3 | orcd | ⊢ ( 𝐴 = ∅ → ( 𝐴 ≺ 2o ∨ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) |
| 5 | onfin2 | ⊢ ω = ( On ∩ Fin ) | |
| 6 | inss2 | ⊢ ( On ∩ Fin ) ⊆ Fin | |
| 7 | 5 6 | eqsstri | ⊢ ω ⊆ Fin |
| 8 | 2onn | ⊢ 2o ∈ ω | |
| 9 | 7 8 | sselii | ⊢ 2o ∈ Fin |
| 10 | relsdom | ⊢ Rel ≺ | |
| 11 | 10 | brrelex1i | ⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) → 𝐴 ∈ V ) |
| 12 | fidomtri | ⊢ ( ( 2o ∈ Fin ∧ 𝐴 ∈ V ) → ( 2o ≼ 𝐴 ↔ ¬ 𝐴 ≺ 2o ) ) | |
| 13 | 9 11 12 | sylancr | ⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) → ( 2o ≼ 𝐴 ↔ ¬ 𝐴 ≺ 2o ) ) |
| 14 | xp2dju | ⊢ ( 2o × 𝐴 ) = ( 𝐴 ⊔ 𝐴 ) | |
| 15 | xpdom1g | ⊢ ( ( 𝐴 ∈ V ∧ 2o ≼ 𝐴 ) → ( 2o × 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) | |
| 16 | 11 15 | sylan | ⊢ ( ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ∧ 2o ≼ 𝐴 ) → ( 2o × 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) |
| 17 | 14 16 | eqbrtrrid | ⊢ ( ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ∧ 2o ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) |
| 18 | sdomdomtr | ⊢ ( ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ∧ ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) → 𝐴 ≺ ( 𝐴 × 𝐴 ) ) | |
| 19 | 17 18 | syldan | ⊢ ( ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ∧ 2o ≼ 𝐴 ) → 𝐴 ≺ ( 𝐴 × 𝐴 ) ) |
| 20 | 19 | ex | ⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) → ( 2o ≼ 𝐴 → 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) |
| 21 | 13 20 | sylbird | ⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) → ( ¬ 𝐴 ≺ 2o → 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) |
| 22 | 21 | orrd | ⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) → ( 𝐴 ≺ 2o ∨ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) |
| 23 | 4 22 | jaoi | ⊢ ( ( 𝐴 = ∅ ∨ 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ) → ( 𝐴 ≺ 2o ∨ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) |
| 24 | isfin5 | ⊢ ( 𝐴 ∈ FinV ↔ ( 𝐴 = ∅ ∨ 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ) ) | |
| 25 | isfin6 | ⊢ ( 𝐴 ∈ FinVI ↔ ( 𝐴 ≺ 2o ∨ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) | |
| 26 | 23 24 25 | 3imtr4i | ⊢ ( 𝐴 ∈ FinV → 𝐴 ∈ FinVI ) |