This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every V-finite set is VI-finite because multiplication dominates addition for cardinals. (Contributed by Stefan O'Rear, 29-Oct-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin56 | |- ( A e. Fin5 -> A e. Fin6 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc | |- ( A = (/) -> ( A = (/) \/ A ~~ 1o ) ) |
|
| 2 | sdom2en01 | |- ( A ~< 2o <-> ( A = (/) \/ A ~~ 1o ) ) |
|
| 3 | 1 2 | sylibr | |- ( A = (/) -> A ~< 2o ) |
| 4 | 3 | orcd | |- ( A = (/) -> ( A ~< 2o \/ A ~< ( A X. A ) ) ) |
| 5 | onfin2 | |- _om = ( On i^i Fin ) |
|
| 6 | inss2 | |- ( On i^i Fin ) C_ Fin |
|
| 7 | 5 6 | eqsstri | |- _om C_ Fin |
| 8 | 2onn | |- 2o e. _om |
|
| 9 | 7 8 | sselii | |- 2o e. Fin |
| 10 | relsdom | |- Rel ~< |
|
| 11 | 10 | brrelex1i | |- ( A ~< ( A |_| A ) -> A e. _V ) |
| 12 | fidomtri | |- ( ( 2o e. Fin /\ A e. _V ) -> ( 2o ~<_ A <-> -. A ~< 2o ) ) |
|
| 13 | 9 11 12 | sylancr | |- ( A ~< ( A |_| A ) -> ( 2o ~<_ A <-> -. A ~< 2o ) ) |
| 14 | xp2dju | |- ( 2o X. A ) = ( A |_| A ) |
|
| 15 | xpdom1g | |- ( ( A e. _V /\ 2o ~<_ A ) -> ( 2o X. A ) ~<_ ( A X. A ) ) |
|
| 16 | 11 15 | sylan | |- ( ( A ~< ( A |_| A ) /\ 2o ~<_ A ) -> ( 2o X. A ) ~<_ ( A X. A ) ) |
| 17 | 14 16 | eqbrtrrid | |- ( ( A ~< ( A |_| A ) /\ 2o ~<_ A ) -> ( A |_| A ) ~<_ ( A X. A ) ) |
| 18 | sdomdomtr | |- ( ( A ~< ( A |_| A ) /\ ( A |_| A ) ~<_ ( A X. A ) ) -> A ~< ( A X. A ) ) |
|
| 19 | 17 18 | syldan | |- ( ( A ~< ( A |_| A ) /\ 2o ~<_ A ) -> A ~< ( A X. A ) ) |
| 20 | 19 | ex | |- ( A ~< ( A |_| A ) -> ( 2o ~<_ A -> A ~< ( A X. A ) ) ) |
| 21 | 13 20 | sylbird | |- ( A ~< ( A |_| A ) -> ( -. A ~< 2o -> A ~< ( A X. A ) ) ) |
| 22 | 21 | orrd | |- ( A ~< ( A |_| A ) -> ( A ~< 2o \/ A ~< ( A X. A ) ) ) |
| 23 | 4 22 | jaoi | |- ( ( A = (/) \/ A ~< ( A |_| A ) ) -> ( A ~< 2o \/ A ~< ( A X. A ) ) ) |
| 24 | isfin5 | |- ( A e. Fin5 <-> ( A = (/) \/ A ~< ( A |_| A ) ) ) |
|
| 25 | isfin6 | |- ( A e. Fin6 <-> ( A ~< 2o \/ A ~< ( A X. A ) ) ) |
|
| 26 | 23 24 25 | 3imtr4i | |- ( A e. Fin5 -> A e. Fin6 ) |