This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a V-finite set. (Contributed by Stefan O'Rear, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfin5 | ⊢ ( 𝐴 ∈ FinV ↔ ( 𝐴 = ∅ ∨ 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fin5 | ⊢ FinV = { 𝑥 ∣ ( 𝑥 = ∅ ∨ 𝑥 ≺ ( 𝑥 ⊔ 𝑥 ) ) } | |
| 2 | 1 | eleq2i | ⊢ ( 𝐴 ∈ FinV ↔ 𝐴 ∈ { 𝑥 ∣ ( 𝑥 = ∅ ∨ 𝑥 ≺ ( 𝑥 ⊔ 𝑥 ) ) } ) |
| 3 | id | ⊢ ( 𝐴 = ∅ → 𝐴 = ∅ ) | |
| 4 | 0ex | ⊢ ∅ ∈ V | |
| 5 | 3 4 | eqeltrdi | ⊢ ( 𝐴 = ∅ → 𝐴 ∈ V ) |
| 6 | relsdom | ⊢ Rel ≺ | |
| 7 | 6 | brrelex1i | ⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) → 𝐴 ∈ V ) |
| 8 | 5 7 | jaoi | ⊢ ( ( 𝐴 = ∅ ∨ 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ) → 𝐴 ∈ V ) |
| 9 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = ∅ ↔ 𝐴 = ∅ ) ) | |
| 10 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 11 | djueq12 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐴 ) → ( 𝑥 ⊔ 𝑥 ) = ( 𝐴 ⊔ 𝐴 ) ) | |
| 12 | 11 | anidms | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊔ 𝑥 ) = ( 𝐴 ⊔ 𝐴 ) ) |
| 13 | 10 12 | breq12d | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≺ ( 𝑥 ⊔ 𝑥 ) ↔ 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ) ) |
| 14 | 9 13 | orbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 = ∅ ∨ 𝑥 ≺ ( 𝑥 ⊔ 𝑥 ) ) ↔ ( 𝐴 = ∅ ∨ 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ) ) ) |
| 15 | 8 14 | elab3 | ⊢ ( 𝐴 ∈ { 𝑥 ∣ ( 𝑥 = ∅ ∨ 𝑥 ≺ ( 𝑥 ⊔ 𝑥 ) ) } ↔ ( 𝐴 = ∅ ∨ 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ) ) |
| 16 | 2 15 | bitri | ⊢ ( 𝐴 ∈ FinV ↔ ( 𝐴 = ∅ ∨ 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ) ) |