This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set with less than two elements has 0 or 1. (Contributed by Stefan O'Rear, 30-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sdom2en01 | ⊢ ( 𝐴 ≺ 2o ↔ ( 𝐴 = ∅ ∨ 𝐴 ≈ 1o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onfin2 | ⊢ ω = ( On ∩ Fin ) | |
| 2 | inss2 | ⊢ ( On ∩ Fin ) ⊆ Fin | |
| 3 | 1 2 | eqsstri | ⊢ ω ⊆ Fin |
| 4 | 2onn | ⊢ 2o ∈ ω | |
| 5 | 3 4 | sselii | ⊢ 2o ∈ Fin |
| 6 | sdomdom | ⊢ ( 𝐴 ≺ 2o → 𝐴 ≼ 2o ) | |
| 7 | domfi | ⊢ ( ( 2o ∈ Fin ∧ 𝐴 ≼ 2o ) → 𝐴 ∈ Fin ) | |
| 8 | 5 6 7 | sylancr | ⊢ ( 𝐴 ≺ 2o → 𝐴 ∈ Fin ) |
| 9 | id | ⊢ ( 𝐴 = ∅ → 𝐴 = ∅ ) | |
| 10 | 0fi | ⊢ ∅ ∈ Fin | |
| 11 | 9 10 | eqeltrdi | ⊢ ( 𝐴 = ∅ → 𝐴 ∈ Fin ) |
| 12 | 1onn | ⊢ 1o ∈ ω | |
| 13 | 3 12 | sselii | ⊢ 1o ∈ Fin |
| 14 | enfi | ⊢ ( 𝐴 ≈ 1o → ( 𝐴 ∈ Fin ↔ 1o ∈ Fin ) ) | |
| 15 | 13 14 | mpbiri | ⊢ ( 𝐴 ≈ 1o → 𝐴 ∈ Fin ) |
| 16 | 11 15 | jaoi | ⊢ ( ( 𝐴 = ∅ ∨ 𝐴 ≈ 1o ) → 𝐴 ∈ Fin ) |
| 17 | df2o3 | ⊢ 2o = { ∅ , 1o } | |
| 18 | 17 | eleq2i | ⊢ ( ( card ‘ 𝐴 ) ∈ 2o ↔ ( card ‘ 𝐴 ) ∈ { ∅ , 1o } ) |
| 19 | fvex | ⊢ ( card ‘ 𝐴 ) ∈ V | |
| 20 | 19 | elpr | ⊢ ( ( card ‘ 𝐴 ) ∈ { ∅ , 1o } ↔ ( ( card ‘ 𝐴 ) = ∅ ∨ ( card ‘ 𝐴 ) = 1o ) ) |
| 21 | 18 20 | bitri | ⊢ ( ( card ‘ 𝐴 ) ∈ 2o ↔ ( ( card ‘ 𝐴 ) = ∅ ∨ ( card ‘ 𝐴 ) = 1o ) ) |
| 22 | 21 | a1i | ⊢ ( 𝐴 ∈ Fin → ( ( card ‘ 𝐴 ) ∈ 2o ↔ ( ( card ‘ 𝐴 ) = ∅ ∨ ( card ‘ 𝐴 ) = 1o ) ) ) |
| 23 | cardnn | ⊢ ( 2o ∈ ω → ( card ‘ 2o ) = 2o ) | |
| 24 | 4 23 | ax-mp | ⊢ ( card ‘ 2o ) = 2o |
| 25 | 24 | eleq2i | ⊢ ( ( card ‘ 𝐴 ) ∈ ( card ‘ 2o ) ↔ ( card ‘ 𝐴 ) ∈ 2o ) |
| 26 | finnum | ⊢ ( 𝐴 ∈ Fin → 𝐴 ∈ dom card ) | |
| 27 | 2on | ⊢ 2o ∈ On | |
| 28 | onenon | ⊢ ( 2o ∈ On → 2o ∈ dom card ) | |
| 29 | 27 28 | ax-mp | ⊢ 2o ∈ dom card |
| 30 | cardsdom2 | ⊢ ( ( 𝐴 ∈ dom card ∧ 2o ∈ dom card ) → ( ( card ‘ 𝐴 ) ∈ ( card ‘ 2o ) ↔ 𝐴 ≺ 2o ) ) | |
| 31 | 26 29 30 | sylancl | ⊢ ( 𝐴 ∈ Fin → ( ( card ‘ 𝐴 ) ∈ ( card ‘ 2o ) ↔ 𝐴 ≺ 2o ) ) |
| 32 | 25 31 | bitr3id | ⊢ ( 𝐴 ∈ Fin → ( ( card ‘ 𝐴 ) ∈ 2o ↔ 𝐴 ≺ 2o ) ) |
| 33 | cardnueq0 | ⊢ ( 𝐴 ∈ dom card → ( ( card ‘ 𝐴 ) = ∅ ↔ 𝐴 = ∅ ) ) | |
| 34 | 26 33 | syl | ⊢ ( 𝐴 ∈ Fin → ( ( card ‘ 𝐴 ) = ∅ ↔ 𝐴 = ∅ ) ) |
| 35 | cardnn | ⊢ ( 1o ∈ ω → ( card ‘ 1o ) = 1o ) | |
| 36 | 12 35 | ax-mp | ⊢ ( card ‘ 1o ) = 1o |
| 37 | 36 | eqeq2i | ⊢ ( ( card ‘ 𝐴 ) = ( card ‘ 1o ) ↔ ( card ‘ 𝐴 ) = 1o ) |
| 38 | finnum | ⊢ ( 1o ∈ Fin → 1o ∈ dom card ) | |
| 39 | 13 38 | ax-mp | ⊢ 1o ∈ dom card |
| 40 | carden2 | ⊢ ( ( 𝐴 ∈ dom card ∧ 1o ∈ dom card ) → ( ( card ‘ 𝐴 ) = ( card ‘ 1o ) ↔ 𝐴 ≈ 1o ) ) | |
| 41 | 26 39 40 | sylancl | ⊢ ( 𝐴 ∈ Fin → ( ( card ‘ 𝐴 ) = ( card ‘ 1o ) ↔ 𝐴 ≈ 1o ) ) |
| 42 | 37 41 | bitr3id | ⊢ ( 𝐴 ∈ Fin → ( ( card ‘ 𝐴 ) = 1o ↔ 𝐴 ≈ 1o ) ) |
| 43 | 34 42 | orbi12d | ⊢ ( 𝐴 ∈ Fin → ( ( ( card ‘ 𝐴 ) = ∅ ∨ ( card ‘ 𝐴 ) = 1o ) ↔ ( 𝐴 = ∅ ∨ 𝐴 ≈ 1o ) ) ) |
| 44 | 22 32 43 | 3bitr3d | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ≺ 2o ↔ ( 𝐴 = ∅ ∨ 𝐴 ≈ 1o ) ) ) |
| 45 | 8 16 44 | pm5.21nii | ⊢ ( 𝐴 ≺ 2o ↔ ( 𝐴 = ∅ ∨ 𝐴 ≈ 1o ) ) |