This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express non-covering pairs of subsets. (Contributed by Stefan O'Rear, 31-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pssdifcom2 | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐵 ⊊ ( 𝐶 ∖ 𝐴 ) ↔ 𝐴 ⊊ ( 𝐶 ∖ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssconb | ⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐶 ) → ( 𝐵 ⊆ ( 𝐶 ∖ 𝐴 ) ↔ 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐵 ⊆ ( 𝐶 ∖ 𝐴 ) ↔ 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ) ) |
| 3 | difcom | ⊢ ( ( 𝐶 ∖ 𝐴 ) ⊆ 𝐵 ↔ ( 𝐶 ∖ 𝐵 ) ⊆ 𝐴 ) | |
| 4 | 3 | notbii | ⊢ ( ¬ ( 𝐶 ∖ 𝐴 ) ⊆ 𝐵 ↔ ¬ ( 𝐶 ∖ 𝐵 ) ⊆ 𝐴 ) |
| 5 | 4 | a1i | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ¬ ( 𝐶 ∖ 𝐴 ) ⊆ 𝐵 ↔ ¬ ( 𝐶 ∖ 𝐵 ) ⊆ 𝐴 ) ) |
| 6 | 2 5 | anbi12d | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝐵 ⊆ ( 𝐶 ∖ 𝐴 ) ∧ ¬ ( 𝐶 ∖ 𝐴 ) ⊆ 𝐵 ) ↔ ( 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ∧ ¬ ( 𝐶 ∖ 𝐵 ) ⊆ 𝐴 ) ) ) |
| 7 | dfpss3 | ⊢ ( 𝐵 ⊊ ( 𝐶 ∖ 𝐴 ) ↔ ( 𝐵 ⊆ ( 𝐶 ∖ 𝐴 ) ∧ ¬ ( 𝐶 ∖ 𝐴 ) ⊆ 𝐵 ) ) | |
| 8 | dfpss3 | ⊢ ( 𝐴 ⊊ ( 𝐶 ∖ 𝐵 ) ↔ ( 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ∧ ¬ ( 𝐶 ∖ 𝐵 ) ⊆ 𝐴 ) ) | |
| 9 | 6 7 8 | 3bitr4g | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐵 ⊊ ( 𝐶 ∖ 𝐴 ) ↔ 𝐴 ⊊ ( 𝐶 ∖ 𝐵 ) ) ) |