This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . By ? Fin3DS ? , U achieves its minimum ( X in the synopsis above, but we will not be assigning a symbol here). TODO: Fix comment; math symbol Fin3DS does not exist. (Contributed by Stefan O'Rear, 4-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| fin23lem17.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | ||
| Assertion | fin23lem17 | ⊢ ( ( ∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡 : ω –1-1→ 𝑉 ) → ∩ ran 𝑈 ∈ ran 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| 2 | fin23lem17.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | |
| 3 | 1 | fin23lem13 | ⊢ ( 𝑐 ∈ ω → ( 𝑈 ‘ suc 𝑐 ) ⊆ ( 𝑈 ‘ 𝑐 ) ) |
| 4 | 3 | rgen | ⊢ ∀ 𝑐 ∈ ω ( 𝑈 ‘ suc 𝑐 ) ⊆ ( 𝑈 ‘ 𝑐 ) |
| 5 | fveq1 | ⊢ ( 𝑏 = 𝑈 → ( 𝑏 ‘ suc 𝑐 ) = ( 𝑈 ‘ suc 𝑐 ) ) | |
| 6 | fveq1 | ⊢ ( 𝑏 = 𝑈 → ( 𝑏 ‘ 𝑐 ) = ( 𝑈 ‘ 𝑐 ) ) | |
| 7 | 5 6 | sseq12d | ⊢ ( 𝑏 = 𝑈 → ( ( 𝑏 ‘ suc 𝑐 ) ⊆ ( 𝑏 ‘ 𝑐 ) ↔ ( 𝑈 ‘ suc 𝑐 ) ⊆ ( 𝑈 ‘ 𝑐 ) ) ) |
| 8 | 7 | ralbidv | ⊢ ( 𝑏 = 𝑈 → ( ∀ 𝑐 ∈ ω ( 𝑏 ‘ suc 𝑐 ) ⊆ ( 𝑏 ‘ 𝑐 ) ↔ ∀ 𝑐 ∈ ω ( 𝑈 ‘ suc 𝑐 ) ⊆ ( 𝑈 ‘ 𝑐 ) ) ) |
| 9 | rneq | ⊢ ( 𝑏 = 𝑈 → ran 𝑏 = ran 𝑈 ) | |
| 10 | 9 | inteqd | ⊢ ( 𝑏 = 𝑈 → ∩ ran 𝑏 = ∩ ran 𝑈 ) |
| 11 | 10 9 | eleq12d | ⊢ ( 𝑏 = 𝑈 → ( ∩ ran 𝑏 ∈ ran 𝑏 ↔ ∩ ran 𝑈 ∈ ran 𝑈 ) ) |
| 12 | 8 11 | imbi12d | ⊢ ( 𝑏 = 𝑈 → ( ( ∀ 𝑐 ∈ ω ( 𝑏 ‘ suc 𝑐 ) ⊆ ( 𝑏 ‘ 𝑐 ) → ∩ ran 𝑏 ∈ ran 𝑏 ) ↔ ( ∀ 𝑐 ∈ ω ( 𝑈 ‘ suc 𝑐 ) ⊆ ( 𝑈 ‘ 𝑐 ) → ∩ ran 𝑈 ∈ ran 𝑈 ) ) ) |
| 13 | 2 | isfin3ds | ⊢ ( ∪ ran 𝑡 ∈ 𝐹 → ( ∪ ran 𝑡 ∈ 𝐹 ↔ ∀ 𝑏 ∈ ( 𝒫 ∪ ran 𝑡 ↑m ω ) ( ∀ 𝑐 ∈ ω ( 𝑏 ‘ suc 𝑐 ) ⊆ ( 𝑏 ‘ 𝑐 ) → ∩ ran 𝑏 ∈ ran 𝑏 ) ) ) |
| 14 | 13 | ibi | ⊢ ( ∪ ran 𝑡 ∈ 𝐹 → ∀ 𝑏 ∈ ( 𝒫 ∪ ran 𝑡 ↑m ω ) ( ∀ 𝑐 ∈ ω ( 𝑏 ‘ suc 𝑐 ) ⊆ ( 𝑏 ‘ 𝑐 ) → ∩ ran 𝑏 ∈ ran 𝑏 ) ) |
| 15 | 14 | adantr | ⊢ ( ( ∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡 : ω –1-1→ 𝑉 ) → ∀ 𝑏 ∈ ( 𝒫 ∪ ran 𝑡 ↑m ω ) ( ∀ 𝑐 ∈ ω ( 𝑏 ‘ suc 𝑐 ) ⊆ ( 𝑏 ‘ 𝑐 ) → ∩ ran 𝑏 ∈ ran 𝑏 ) ) |
| 16 | 1 | fnseqom | ⊢ 𝑈 Fn ω |
| 17 | dffn3 | ⊢ ( 𝑈 Fn ω ↔ 𝑈 : ω ⟶ ran 𝑈 ) | |
| 18 | 16 17 | mpbi | ⊢ 𝑈 : ω ⟶ ran 𝑈 |
| 19 | pwuni | ⊢ ran 𝑈 ⊆ 𝒫 ∪ ran 𝑈 | |
| 20 | 1 | fin23lem16 | ⊢ ∪ ran 𝑈 = ∪ ran 𝑡 |
| 21 | 20 | pweqi | ⊢ 𝒫 ∪ ran 𝑈 = 𝒫 ∪ ran 𝑡 |
| 22 | 19 21 | sseqtri | ⊢ ran 𝑈 ⊆ 𝒫 ∪ ran 𝑡 |
| 23 | fss | ⊢ ( ( 𝑈 : ω ⟶ ran 𝑈 ∧ ran 𝑈 ⊆ 𝒫 ∪ ran 𝑡 ) → 𝑈 : ω ⟶ 𝒫 ∪ ran 𝑡 ) | |
| 24 | 18 22 23 | mp2an | ⊢ 𝑈 : ω ⟶ 𝒫 ∪ ran 𝑡 |
| 25 | vex | ⊢ 𝑡 ∈ V | |
| 26 | 25 | rnex | ⊢ ran 𝑡 ∈ V |
| 27 | 26 | uniex | ⊢ ∪ ran 𝑡 ∈ V |
| 28 | 27 | pwex | ⊢ 𝒫 ∪ ran 𝑡 ∈ V |
| 29 | f1f | ⊢ ( 𝑡 : ω –1-1→ 𝑉 → 𝑡 : ω ⟶ 𝑉 ) | |
| 30 | dmfex | ⊢ ( ( 𝑡 ∈ V ∧ 𝑡 : ω ⟶ 𝑉 ) → ω ∈ V ) | |
| 31 | 25 29 30 | sylancr | ⊢ ( 𝑡 : ω –1-1→ 𝑉 → ω ∈ V ) |
| 32 | 31 | adantl | ⊢ ( ( ∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡 : ω –1-1→ 𝑉 ) → ω ∈ V ) |
| 33 | elmapg | ⊢ ( ( 𝒫 ∪ ran 𝑡 ∈ V ∧ ω ∈ V ) → ( 𝑈 ∈ ( 𝒫 ∪ ran 𝑡 ↑m ω ) ↔ 𝑈 : ω ⟶ 𝒫 ∪ ran 𝑡 ) ) | |
| 34 | 28 32 33 | sylancr | ⊢ ( ( ∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡 : ω –1-1→ 𝑉 ) → ( 𝑈 ∈ ( 𝒫 ∪ ran 𝑡 ↑m ω ) ↔ 𝑈 : ω ⟶ 𝒫 ∪ ran 𝑡 ) ) |
| 35 | 24 34 | mpbiri | ⊢ ( ( ∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡 : ω –1-1→ 𝑉 ) → 𝑈 ∈ ( 𝒫 ∪ ran 𝑡 ↑m ω ) ) |
| 36 | 12 15 35 | rspcdva | ⊢ ( ( ∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡 : ω –1-1→ 𝑉 ) → ( ∀ 𝑐 ∈ ω ( 𝑈 ‘ suc 𝑐 ) ⊆ ( 𝑈 ‘ 𝑐 ) → ∩ ran 𝑈 ∈ ran 𝑈 ) ) |
| 37 | 4 36 | mpi | ⊢ ( ( ∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡 : ω –1-1→ 𝑉 ) → ∩ ran 𝑈 ∈ ran 𝑈 ) |