This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . U will never evolve to an empty set if it did not start with one. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| Assertion | fin23lem14 | ⊢ ( ( 𝐴 ∈ ω ∧ ∪ ran 𝑡 ≠ ∅ ) → ( 𝑈 ‘ 𝐴 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| 2 | fveq2 | ⊢ ( 𝑎 = ∅ → ( 𝑈 ‘ 𝑎 ) = ( 𝑈 ‘ ∅ ) ) | |
| 3 | 2 | neeq1d | ⊢ ( 𝑎 = ∅ → ( ( 𝑈 ‘ 𝑎 ) ≠ ∅ ↔ ( 𝑈 ‘ ∅ ) ≠ ∅ ) ) |
| 4 | 3 | imbi2d | ⊢ ( 𝑎 = ∅ → ( ( ∪ ran 𝑡 ≠ ∅ → ( 𝑈 ‘ 𝑎 ) ≠ ∅ ) ↔ ( ∪ ran 𝑡 ≠ ∅ → ( 𝑈 ‘ ∅ ) ≠ ∅ ) ) ) |
| 5 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝑈 ‘ 𝑎 ) = ( 𝑈 ‘ 𝑏 ) ) | |
| 6 | 5 | neeq1d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝑈 ‘ 𝑎 ) ≠ ∅ ↔ ( 𝑈 ‘ 𝑏 ) ≠ ∅ ) ) |
| 7 | 6 | imbi2d | ⊢ ( 𝑎 = 𝑏 → ( ( ∪ ran 𝑡 ≠ ∅ → ( 𝑈 ‘ 𝑎 ) ≠ ∅ ) ↔ ( ∪ ran 𝑡 ≠ ∅ → ( 𝑈 ‘ 𝑏 ) ≠ ∅ ) ) ) |
| 8 | fveq2 | ⊢ ( 𝑎 = suc 𝑏 → ( 𝑈 ‘ 𝑎 ) = ( 𝑈 ‘ suc 𝑏 ) ) | |
| 9 | 8 | neeq1d | ⊢ ( 𝑎 = suc 𝑏 → ( ( 𝑈 ‘ 𝑎 ) ≠ ∅ ↔ ( 𝑈 ‘ suc 𝑏 ) ≠ ∅ ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑎 = suc 𝑏 → ( ( ∪ ran 𝑡 ≠ ∅ → ( 𝑈 ‘ 𝑎 ) ≠ ∅ ) ↔ ( ∪ ran 𝑡 ≠ ∅ → ( 𝑈 ‘ suc 𝑏 ) ≠ ∅ ) ) ) |
| 11 | fveq2 | ⊢ ( 𝑎 = 𝐴 → ( 𝑈 ‘ 𝑎 ) = ( 𝑈 ‘ 𝐴 ) ) | |
| 12 | 11 | neeq1d | ⊢ ( 𝑎 = 𝐴 → ( ( 𝑈 ‘ 𝑎 ) ≠ ∅ ↔ ( 𝑈 ‘ 𝐴 ) ≠ ∅ ) ) |
| 13 | 12 | imbi2d | ⊢ ( 𝑎 = 𝐴 → ( ( ∪ ran 𝑡 ≠ ∅ → ( 𝑈 ‘ 𝑎 ) ≠ ∅ ) ↔ ( ∪ ran 𝑡 ≠ ∅ → ( 𝑈 ‘ 𝐴 ) ≠ ∅ ) ) ) |
| 14 | vex | ⊢ 𝑡 ∈ V | |
| 15 | 14 | rnex | ⊢ ran 𝑡 ∈ V |
| 16 | 15 | uniex | ⊢ ∪ ran 𝑡 ∈ V |
| 17 | 1 | seqom0g | ⊢ ( ∪ ran 𝑡 ∈ V → ( 𝑈 ‘ ∅ ) = ∪ ran 𝑡 ) |
| 18 | 16 17 | mp1i | ⊢ ( ∪ ran 𝑡 ≠ ∅ → ( 𝑈 ‘ ∅ ) = ∪ ran 𝑡 ) |
| 19 | id | ⊢ ( ∪ ran 𝑡 ≠ ∅ → ∪ ran 𝑡 ≠ ∅ ) | |
| 20 | 18 19 | eqnetrd | ⊢ ( ∪ ran 𝑡 ≠ ∅ → ( 𝑈 ‘ ∅ ) ≠ ∅ ) |
| 21 | 1 | fin23lem12 | ⊢ ( 𝑏 ∈ ω → ( 𝑈 ‘ suc 𝑏 ) = if ( ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) = ∅ , ( 𝑈 ‘ 𝑏 ) , ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝑈 ‘ 𝑏 ) ≠ ∅ ) → ( 𝑈 ‘ suc 𝑏 ) = if ( ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) = ∅ , ( 𝑈 ‘ 𝑏 ) , ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) ) ) |
| 23 | iftrue | ⊢ ( ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) = ∅ → if ( ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) = ∅ , ( 𝑈 ‘ 𝑏 ) , ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) ) = ( 𝑈 ‘ 𝑏 ) ) | |
| 24 | 23 | adantr | ⊢ ( ( ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) = ∅ ∧ ( 𝑏 ∈ ω ∧ ( 𝑈 ‘ 𝑏 ) ≠ ∅ ) ) → if ( ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) = ∅ , ( 𝑈 ‘ 𝑏 ) , ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) ) = ( 𝑈 ‘ 𝑏 ) ) |
| 25 | simprr | ⊢ ( ( ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) = ∅ ∧ ( 𝑏 ∈ ω ∧ ( 𝑈 ‘ 𝑏 ) ≠ ∅ ) ) → ( 𝑈 ‘ 𝑏 ) ≠ ∅ ) | |
| 26 | 24 25 | eqnetrd | ⊢ ( ( ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) = ∅ ∧ ( 𝑏 ∈ ω ∧ ( 𝑈 ‘ 𝑏 ) ≠ ∅ ) ) → if ( ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) = ∅ , ( 𝑈 ‘ 𝑏 ) , ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) ) ≠ ∅ ) |
| 27 | iffalse | ⊢ ( ¬ ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) = ∅ → if ( ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) = ∅ , ( 𝑈 ‘ 𝑏 ) , ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) ) = ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) ) | |
| 28 | 27 | adantr | ⊢ ( ( ¬ ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) = ∅ ∧ ( 𝑏 ∈ ω ∧ ( 𝑈 ‘ 𝑏 ) ≠ ∅ ) ) → if ( ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) = ∅ , ( 𝑈 ‘ 𝑏 ) , ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) ) = ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) ) |
| 29 | neqne | ⊢ ( ¬ ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) = ∅ → ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) ≠ ∅ ) | |
| 30 | 29 | adantr | ⊢ ( ( ¬ ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) = ∅ ∧ ( 𝑏 ∈ ω ∧ ( 𝑈 ‘ 𝑏 ) ≠ ∅ ) ) → ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) ≠ ∅ ) |
| 31 | 28 30 | eqnetrd | ⊢ ( ( ¬ ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) = ∅ ∧ ( 𝑏 ∈ ω ∧ ( 𝑈 ‘ 𝑏 ) ≠ ∅ ) ) → if ( ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) = ∅ , ( 𝑈 ‘ 𝑏 ) , ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) ) ≠ ∅ ) |
| 32 | 26 31 | pm2.61ian | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝑈 ‘ 𝑏 ) ≠ ∅ ) → if ( ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) = ∅ , ( 𝑈 ‘ 𝑏 ) , ( ( 𝑡 ‘ 𝑏 ) ∩ ( 𝑈 ‘ 𝑏 ) ) ) ≠ ∅ ) |
| 33 | 22 32 | eqnetrd | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝑈 ‘ 𝑏 ) ≠ ∅ ) → ( 𝑈 ‘ suc 𝑏 ) ≠ ∅ ) |
| 34 | 33 | ex | ⊢ ( 𝑏 ∈ ω → ( ( 𝑈 ‘ 𝑏 ) ≠ ∅ → ( 𝑈 ‘ suc 𝑏 ) ≠ ∅ ) ) |
| 35 | 34 | imim2d | ⊢ ( 𝑏 ∈ ω → ( ( ∪ ran 𝑡 ≠ ∅ → ( 𝑈 ‘ 𝑏 ) ≠ ∅ ) → ( ∪ ran 𝑡 ≠ ∅ → ( 𝑈 ‘ suc 𝑏 ) ≠ ∅ ) ) ) |
| 36 | 4 7 10 13 20 35 | finds | ⊢ ( 𝐴 ∈ ω → ( ∪ ran 𝑡 ≠ ∅ → ( 𝑈 ‘ 𝐴 ) ≠ ∅ ) ) |
| 37 | 36 | imp | ⊢ ( ( 𝐴 ∈ ω ∧ ∪ ran 𝑡 ≠ ∅ ) → ( 𝑈 ‘ 𝐴 ) ≠ ∅ ) |