This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . X is not empty. We only need here that t has at least one set in its range besides (/) ; the much stronger hypothesis here will serve as our induction hypothesis though. (Contributed by Stefan O'Rear, 1-Nov-2014) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| fin23lem17.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
||
| Assertion | fin23lem21 | |- ( ( U. ran t e. F /\ t : _om -1-1-> V ) -> |^| ran U =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| 2 | fin23lem17.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
|
| 3 | 1 2 | fin23lem17 | |- ( ( U. ran t e. F /\ t : _om -1-1-> V ) -> |^| ran U e. ran U ) |
| 4 | 1 | fnseqom | |- U Fn _om |
| 5 | fvelrnb | |- ( U Fn _om -> ( |^| ran U e. ran U <-> E. a e. _om ( U ` a ) = |^| ran U ) ) |
|
| 6 | 4 5 | ax-mp | |- ( |^| ran U e. ran U <-> E. a e. _om ( U ` a ) = |^| ran U ) |
| 7 | id | |- ( a e. _om -> a e. _om ) |
|
| 8 | vex | |- t e. _V |
|
| 9 | f1f1orn | |- ( t : _om -1-1-> V -> t : _om -1-1-onto-> ran t ) |
|
| 10 | f1oen3g | |- ( ( t e. _V /\ t : _om -1-1-onto-> ran t ) -> _om ~~ ran t ) |
|
| 11 | 8 9 10 | sylancr | |- ( t : _om -1-1-> V -> _om ~~ ran t ) |
| 12 | ominf | |- -. _om e. Fin |
|
| 13 | ssdif0 | |- ( ran t C_ { (/) } <-> ( ran t \ { (/) } ) = (/) ) |
|
| 14 | snfi | |- { (/) } e. Fin |
|
| 15 | ssfi | |- ( ( { (/) } e. Fin /\ ran t C_ { (/) } ) -> ran t e. Fin ) |
|
| 16 | 14 15 | mpan | |- ( ran t C_ { (/) } -> ran t e. Fin ) |
| 17 | enfi | |- ( _om ~~ ran t -> ( _om e. Fin <-> ran t e. Fin ) ) |
|
| 18 | 16 17 | imbitrrid | |- ( _om ~~ ran t -> ( ran t C_ { (/) } -> _om e. Fin ) ) |
| 19 | 13 18 | biimtrrid | |- ( _om ~~ ran t -> ( ( ran t \ { (/) } ) = (/) -> _om e. Fin ) ) |
| 20 | 19 | necon3bd | |- ( _om ~~ ran t -> ( -. _om e. Fin -> ( ran t \ { (/) } ) =/= (/) ) ) |
| 21 | 11 12 20 | mpisyl | |- ( t : _om -1-1-> V -> ( ran t \ { (/) } ) =/= (/) ) |
| 22 | n0 | |- ( ( ran t \ { (/) } ) =/= (/) <-> E. a a e. ( ran t \ { (/) } ) ) |
|
| 23 | eldifsn | |- ( a e. ( ran t \ { (/) } ) <-> ( a e. ran t /\ a =/= (/) ) ) |
|
| 24 | elssuni | |- ( a e. ran t -> a C_ U. ran t ) |
|
| 25 | ssn0 | |- ( ( a C_ U. ran t /\ a =/= (/) ) -> U. ran t =/= (/) ) |
|
| 26 | 24 25 | sylan | |- ( ( a e. ran t /\ a =/= (/) ) -> U. ran t =/= (/) ) |
| 27 | 23 26 | sylbi | |- ( a e. ( ran t \ { (/) } ) -> U. ran t =/= (/) ) |
| 28 | 27 | exlimiv | |- ( E. a a e. ( ran t \ { (/) } ) -> U. ran t =/= (/) ) |
| 29 | 22 28 | sylbi | |- ( ( ran t \ { (/) } ) =/= (/) -> U. ran t =/= (/) ) |
| 30 | 21 29 | syl | |- ( t : _om -1-1-> V -> U. ran t =/= (/) ) |
| 31 | 1 | fin23lem14 | |- ( ( a e. _om /\ U. ran t =/= (/) ) -> ( U ` a ) =/= (/) ) |
| 32 | 7 30 31 | syl2anr | |- ( ( t : _om -1-1-> V /\ a e. _om ) -> ( U ` a ) =/= (/) ) |
| 33 | neeq1 | |- ( ( U ` a ) = |^| ran U -> ( ( U ` a ) =/= (/) <-> |^| ran U =/= (/) ) ) |
|
| 34 | 32 33 | syl5ibcom | |- ( ( t : _om -1-1-> V /\ a e. _om ) -> ( ( U ` a ) = |^| ran U -> |^| ran U =/= (/) ) ) |
| 35 | 34 | rexlimdva | |- ( t : _om -1-1-> V -> ( E. a e. _om ( U ` a ) = |^| ran U -> |^| ran U =/= (/) ) ) |
| 36 | 6 35 | biimtrid | |- ( t : _om -1-1-> V -> ( |^| ran U e. ran U -> |^| ran U =/= (/) ) ) |
| 37 | 36 | adantl | |- ( ( U. ran t e. F /\ t : _om -1-1-> V ) -> ( |^| ran U e. ran U -> |^| ran U =/= (/) ) ) |
| 38 | 3 37 | mpd | |- ( ( U. ran t e. F /\ t : _om -1-1-> V ) -> |^| ran U =/= (/) ) |