This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak dominance over nonempty sets. (Contributed by Stefan O'Rear, 11-Feb-2015) (Revised by Mario Carneiro, 5-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brwdomn0 | ⊢ ( 𝑋 ≠ ∅ → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relwdom | ⊢ Rel ≼* | |
| 2 | 1 | brrelex2i | ⊢ ( 𝑋 ≼* 𝑌 → 𝑌 ∈ V ) |
| 3 | 2 | a1i | ⊢ ( 𝑋 ≠ ∅ → ( 𝑋 ≼* 𝑌 → 𝑌 ∈ V ) ) |
| 4 | fof | ⊢ ( 𝑧 : 𝑌 –onto→ 𝑋 → 𝑧 : 𝑌 ⟶ 𝑋 ) | |
| 5 | 4 | fdmd | ⊢ ( 𝑧 : 𝑌 –onto→ 𝑋 → dom 𝑧 = 𝑌 ) |
| 6 | vex | ⊢ 𝑧 ∈ V | |
| 7 | 6 | dmex | ⊢ dom 𝑧 ∈ V |
| 8 | 5 7 | eqeltrrdi | ⊢ ( 𝑧 : 𝑌 –onto→ 𝑋 → 𝑌 ∈ V ) |
| 9 | 8 | exlimiv | ⊢ ( ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 → 𝑌 ∈ V ) |
| 10 | 9 | a1i | ⊢ ( 𝑋 ≠ ∅ → ( ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 → 𝑌 ∈ V ) ) |
| 11 | brwdom | ⊢ ( 𝑌 ∈ V → ( 𝑋 ≼* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) | |
| 12 | df-ne | ⊢ ( 𝑋 ≠ ∅ ↔ ¬ 𝑋 = ∅ ) | |
| 13 | biorf | ⊢ ( ¬ 𝑋 = ∅ → ( ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) | |
| 14 | 12 13 | sylbi | ⊢ ( 𝑋 ≠ ∅ → ( ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) |
| 15 | 14 | bicomd | ⊢ ( 𝑋 ≠ ∅ → ( ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ↔ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) |
| 16 | 11 15 | sylan9bbr | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝑌 ∈ V ) → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) |
| 17 | 16 | ex | ⊢ ( 𝑋 ≠ ∅ → ( 𝑌 ∈ V → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) |
| 18 | 3 10 17 | pm5.21ndd | ⊢ ( 𝑋 ≠ ∅ → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) |