This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of onto functions. (Contributed by NM, 22-Mar-2006) (Proof shortened by AV, 29-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | foco | ⊢ ( ( 𝐹 : 𝐵 –onto→ 𝐶 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : 𝐴 –onto→ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐹 : 𝐵 –onto→ 𝐶 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → 𝐹 : 𝐵 –onto→ 𝐶 ) | |
| 2 | fofun | ⊢ ( 𝐺 : 𝐴 –onto→ 𝐵 → Fun 𝐺 ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐹 : 𝐵 –onto→ 𝐶 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → Fun 𝐺 ) |
| 4 | forn | ⊢ ( 𝐺 : 𝐴 –onto→ 𝐵 → ran 𝐺 = 𝐵 ) | |
| 5 | eqimss2 | ⊢ ( ran 𝐺 = 𝐵 → 𝐵 ⊆ ran 𝐺 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐺 : 𝐴 –onto→ 𝐵 → 𝐵 ⊆ ran 𝐺 ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐹 : 𝐵 –onto→ 𝐶 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → 𝐵 ⊆ ran 𝐺 ) |
| 8 | focofo | ⊢ ( ( 𝐹 : 𝐵 –onto→ 𝐶 ∧ Fun 𝐺 ∧ 𝐵 ⊆ ran 𝐺 ) → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐵 ) –onto→ 𝐶 ) | |
| 9 | 1 3 7 8 | syl3anc | ⊢ ( ( 𝐹 : 𝐵 –onto→ 𝐶 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐵 ) –onto→ 𝐶 ) |
| 10 | focnvimacdmdm | ⊢ ( 𝐺 : 𝐴 –onto→ 𝐵 → ( ◡ 𝐺 “ 𝐵 ) = 𝐴 ) | |
| 11 | 10 | eqcomd | ⊢ ( 𝐺 : 𝐴 –onto→ 𝐵 → 𝐴 = ( ◡ 𝐺 “ 𝐵 ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝐹 : 𝐵 –onto→ 𝐶 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → 𝐴 = ( ◡ 𝐺 “ 𝐵 ) ) |
| 13 | foeq2 | ⊢ ( 𝐴 = ( ◡ 𝐺 “ 𝐵 ) → ( ( 𝐹 ∘ 𝐺 ) : 𝐴 –onto→ 𝐶 ↔ ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐵 ) –onto→ 𝐶 ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝐹 : 𝐵 –onto→ 𝐶 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → ( ( 𝐹 ∘ 𝐺 ) : 𝐴 –onto→ 𝐶 ↔ ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐵 ) –onto→ 𝐶 ) ) |
| 15 | 9 14 | mpbird | ⊢ ( ( 𝐹 : 𝐵 –onto→ 𝐶 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : 𝐴 –onto→ 𝐶 ) |