This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An onto function implies weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fowdom | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → 𝑋 ≼* 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐹 ∈ 𝑉 → 𝐹 ∈ V ) | |
| 2 | foeq1 | ⊢ ( 𝑧 = 𝐹 → ( 𝑧 : 𝑌 –onto→ 𝑋 ↔ 𝐹 : 𝑌 –onto→ 𝑋 ) ) | |
| 3 | 2 | spcegv | ⊢ ( 𝐹 ∈ V → ( 𝐹 : 𝑌 –onto→ 𝑋 → ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) |
| 4 | 3 | imp | ⊢ ( ( 𝐹 ∈ V ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) |
| 5 | 4 | olcd | ⊢ ( ( 𝐹 ∈ V ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) |
| 6 | fof | ⊢ ( 𝐹 : 𝑌 –onto→ 𝑋 → 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 7 | dmfex | ⊢ ( ( 𝐹 ∈ V ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝑌 ∈ V ) | |
| 8 | 6 7 | sylan2 | ⊢ ( ( 𝐹 ∈ V ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → 𝑌 ∈ V ) |
| 9 | brwdom | ⊢ ( 𝑌 ∈ V → ( 𝑋 ≼* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐹 ∈ V ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( 𝑋 ≼* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) |
| 11 | 5 10 | mpbird | ⊢ ( ( 𝐹 ∈ V ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → 𝑋 ≼* 𝑌 ) |
| 12 | 1 11 | sylan | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → 𝑋 ≼* 𝑌 ) |