This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An II-infinite set can have an I-infinite part broken off and remain II-infinite. (Contributed by Stefan O'Rear, 8-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin1a2s | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) → 𝐴 ∈ FinII ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi | ⊢ ( 𝑐 ∈ 𝒫 𝒫 𝐴 → 𝑐 ⊆ 𝒫 𝐴 ) | |
| 2 | fin12 | ⊢ ( 𝑥 ∈ Fin → 𝑥 ∈ FinII ) | |
| 3 | fin23 | ⊢ ( 𝑥 ∈ FinII → 𝑥 ∈ FinIII ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑥 ∈ Fin → 𝑥 ∈ FinIII ) |
| 5 | fin23 | ⊢ ( ( 𝐴 ∖ 𝑥 ) ∈ FinII → ( 𝐴 ∖ 𝑥 ) ∈ FinIII ) | |
| 6 | 4 5 | orim12i | ⊢ ( ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) → ( 𝑥 ∈ FinIII ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinIII ) ) |
| 7 | 6 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) → ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ FinIII ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinIII ) ) |
| 8 | fin1a2lem8 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ FinIII ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinIII ) ) → 𝐴 ∈ FinIII ) | |
| 9 | 7 8 | sylan2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) → 𝐴 ∈ FinIII ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) → 𝐴 ∈ FinIII ) |
| 11 | simplrl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ( ¬ ∪ 𝑐 ∈ 𝑐 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ) → 𝑐 ⊆ 𝒫 𝐴 ) | |
| 12 | simprrr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) → [⊊] Or 𝑐 ) | |
| 13 | 12 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ( ¬ ∪ 𝑐 ∈ 𝑐 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ) → [⊊] Or 𝑐 ) |
| 14 | simprl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ( ¬ ∪ 𝑐 ∈ 𝑐 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ) → ¬ ∪ 𝑐 ∈ 𝑐 ) | |
| 15 | simplrl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) → 𝑐 ⊆ 𝒫 𝐴 ) | |
| 16 | ssralv | ⊢ ( 𝑐 ⊆ 𝒫 𝐴 → ( ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) → ∀ 𝑥 ∈ 𝑐 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) → ( ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) → ∀ 𝑥 ∈ 𝑐 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ) |
| 18 | idd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) ∧ 𝑥 ∈ 𝑐 ) → ( 𝑥 ∈ Fin → 𝑥 ∈ Fin ) ) | |
| 19 | fin1a2lem13 | ⊢ ( ( ( 𝑐 ⊆ 𝒫 𝐴 ∧ [⊊] Or 𝑐 ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) ∧ ( ¬ 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝑐 ) ) → ¬ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) | |
| 20 | 19 | ex | ⊢ ( ( 𝑐 ⊆ 𝒫 𝐴 ∧ [⊊] Or 𝑐 ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) → ( ( ¬ 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝑐 ) → ¬ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) |
| 21 | 20 | 3expa | ⊢ ( ( ( 𝑐 ⊆ 𝒫 𝐴 ∧ [⊊] Or 𝑐 ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) → ( ( ¬ 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝑐 ) → ¬ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) |
| 22 | 21 | adantlrl | ⊢ ( ( ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) → ( ( ¬ 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝑐 ) → ¬ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) |
| 23 | 22 | adantll | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) → ( ( ¬ 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝑐 ) → ¬ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) |
| 24 | 23 | imp | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) ∧ ( ¬ 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝑐 ) ) → ¬ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) |
| 25 | 24 | ancom2s | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) ∧ ( 𝑥 ∈ 𝑐 ∧ ¬ 𝑥 ∈ Fin ) ) → ¬ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) |
| 26 | 25 | expr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) ∧ 𝑥 ∈ 𝑐 ) → ( ¬ 𝑥 ∈ Fin → ¬ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) |
| 27 | 26 | con4d | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) ∧ 𝑥 ∈ 𝑐 ) → ( ( 𝐴 ∖ 𝑥 ) ∈ FinII → 𝑥 ∈ Fin ) ) |
| 28 | 18 27 | jaod | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) ∧ 𝑥 ∈ 𝑐 ) → ( ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) → 𝑥 ∈ Fin ) ) |
| 29 | 28 | ralimdva | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) → ( ∀ 𝑥 ∈ 𝑐 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) → ∀ 𝑥 ∈ 𝑐 𝑥 ∈ Fin ) ) |
| 30 | 17 29 | syld | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) → ( ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) → ∀ 𝑥 ∈ 𝑐 𝑥 ∈ Fin ) ) |
| 31 | 30 | impr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ( ¬ ∪ 𝑐 ∈ 𝑐 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ) → ∀ 𝑥 ∈ 𝑐 𝑥 ∈ Fin ) |
| 32 | dfss3 | ⊢ ( 𝑐 ⊆ Fin ↔ ∀ 𝑥 ∈ 𝑐 𝑥 ∈ Fin ) | |
| 33 | 31 32 | sylibr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ( ¬ ∪ 𝑐 ∈ 𝑐 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ) → 𝑐 ⊆ Fin ) |
| 34 | simprrl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) → 𝑐 ≠ ∅ ) | |
| 35 | 34 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ( ¬ ∪ 𝑐 ∈ 𝑐 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ) → 𝑐 ≠ ∅ ) |
| 36 | fin1a2lem12 | ⊢ ( ( ( 𝑐 ⊆ 𝒫 𝐴 ∧ [⊊] Or 𝑐 ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) ∧ ( 𝑐 ⊆ Fin ∧ 𝑐 ≠ ∅ ) ) → ¬ 𝐴 ∈ FinIII ) | |
| 37 | 11 13 14 33 35 36 | syl32anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ( ¬ ∪ 𝑐 ∈ 𝑐 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ) → ¬ 𝐴 ∈ FinIII ) |
| 38 | 37 | expr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) → ( ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) → ¬ 𝐴 ∈ FinIII ) ) |
| 39 | 38 | impancom | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) → ( ¬ ∪ 𝑐 ∈ 𝑐 → ¬ 𝐴 ∈ FinIII ) ) |
| 40 | 39 | an32s | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) → ( ¬ ∪ 𝑐 ∈ 𝑐 → ¬ 𝐴 ∈ FinIII ) ) |
| 41 | 10 40 | mt4d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) → ∪ 𝑐 ∈ 𝑐 ) |
| 42 | 41 | exp32 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) → ( 𝑐 ⊆ 𝒫 𝐴 → ( ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) → ∪ 𝑐 ∈ 𝑐 ) ) ) |
| 43 | 1 42 | syl5 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) → ( 𝑐 ∈ 𝒫 𝒫 𝐴 → ( ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) → ∪ 𝑐 ∈ 𝑐 ) ) ) |
| 44 | 43 | ralrimiv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) → ∀ 𝑐 ∈ 𝒫 𝒫 𝐴 ( ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) → ∪ 𝑐 ∈ 𝑐 ) ) |
| 45 | isfin2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinII ↔ ∀ 𝑐 ∈ 𝒫 𝒫 𝐴 ( ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) → ∪ 𝑐 ∈ 𝑐 ) ) ) | |
| 46 | 45 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) → ( 𝐴 ∈ FinII ↔ ∀ 𝑐 ∈ 𝒫 𝒫 𝐴 ( ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) → ∪ 𝑐 ∈ 𝑐 ) ) ) |
| 47 | 44 46 | mpbird | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) → 𝐴 ∈ FinII ) |