This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak theorem which skips Ia but has a trivial proof, needed to prove fin1a2 . (Contributed by Stefan O'Rear, 8-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin12 | |- ( A e. Fin -> A e. Fin2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- b e. _V |
|
| 2 | 1 | a1i | |- ( ( ( A e. Fin /\ b e. ~P ~P A ) /\ ( b =/= (/) /\ [C.] Or b ) ) -> b e. _V ) |
| 3 | isfin1-3 | |- ( A e. Fin -> ( A e. Fin <-> `' [C.] Fr ~P A ) ) |
|
| 4 | 3 | ibi | |- ( A e. Fin -> `' [C.] Fr ~P A ) |
| 5 | 4 | ad2antrr | |- ( ( ( A e. Fin /\ b e. ~P ~P A ) /\ ( b =/= (/) /\ [C.] Or b ) ) -> `' [C.] Fr ~P A ) |
| 6 | elpwi | |- ( b e. ~P ~P A -> b C_ ~P A ) |
|
| 7 | 6 | ad2antlr | |- ( ( ( A e. Fin /\ b e. ~P ~P A ) /\ ( b =/= (/) /\ [C.] Or b ) ) -> b C_ ~P A ) |
| 8 | simprl | |- ( ( ( A e. Fin /\ b e. ~P ~P A ) /\ ( b =/= (/) /\ [C.] Or b ) ) -> b =/= (/) ) |
|
| 9 | fri | |- ( ( ( b e. _V /\ `' [C.] Fr ~P A ) /\ ( b C_ ~P A /\ b =/= (/) ) ) -> E. c e. b A. d e. b -. d `' [C.] c ) |
|
| 10 | 2 5 7 8 9 | syl22anc | |- ( ( ( A e. Fin /\ b e. ~P ~P A ) /\ ( b =/= (/) /\ [C.] Or b ) ) -> E. c e. b A. d e. b -. d `' [C.] c ) |
| 11 | vex | |- d e. _V |
|
| 12 | vex | |- c e. _V |
|
| 13 | 11 12 | brcnv | |- ( d `' [C.] c <-> c [C.] d ) |
| 14 | 11 | brrpss | |- ( c [C.] d <-> c C. d ) |
| 15 | 13 14 | bitri | |- ( d `' [C.] c <-> c C. d ) |
| 16 | 15 | notbii | |- ( -. d `' [C.] c <-> -. c C. d ) |
| 17 | 16 | ralbii | |- ( A. d e. b -. d `' [C.] c <-> A. d e. b -. c C. d ) |
| 18 | 17 | rexbii | |- ( E. c e. b A. d e. b -. d `' [C.] c <-> E. c e. b A. d e. b -. c C. d ) |
| 19 | 10 18 | sylib | |- ( ( ( A e. Fin /\ b e. ~P ~P A ) /\ ( b =/= (/) /\ [C.] Or b ) ) -> E. c e. b A. d e. b -. c C. d ) |
| 20 | sorpssuni | |- ( [C.] Or b -> ( E. c e. b A. d e. b -. c C. d <-> U. b e. b ) ) |
|
| 21 | 20 | ad2antll | |- ( ( ( A e. Fin /\ b e. ~P ~P A ) /\ ( b =/= (/) /\ [C.] Or b ) ) -> ( E. c e. b A. d e. b -. c C. d <-> U. b e. b ) ) |
| 22 | 19 21 | mpbid | |- ( ( ( A e. Fin /\ b e. ~P ~P A ) /\ ( b =/= (/) /\ [C.] Or b ) ) -> U. b e. b ) |
| 23 | 22 | ex | |- ( ( A e. Fin /\ b e. ~P ~P A ) -> ( ( b =/= (/) /\ [C.] Or b ) -> U. b e. b ) ) |
| 24 | 23 | ralrimiva | |- ( A e. Fin -> A. b e. ~P ~P A ( ( b =/= (/) /\ [C.] Or b ) -> U. b e. b ) ) |
| 25 | isfin2 | |- ( A e. Fin -> ( A e. Fin2 <-> A. b e. ~P ~P A ( ( b =/= (/) /\ [C.] Or b ) -> U. b e. b ) ) ) |
|
| 26 | 24 25 | mpbird | |- ( A e. Fin -> A e. Fin2 ) |