This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for the trace of a filter L to be a filter. (Contributed by FL, 2-Sep-2013) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trfil1 | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 = ∪ ( 𝐿 ↾t 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 ⊆ 𝑌 ) | |
| 2 | sseqin2 | ⊢ ( 𝐴 ⊆ 𝑌 ↔ ( 𝑌 ∩ 𝐴 ) = 𝐴 ) | |
| 3 | 1 2 | sylib | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( 𝑌 ∩ 𝐴 ) = 𝐴 ) |
| 4 | simpl | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐿 ∈ ( Fil ‘ 𝑌 ) ) | |
| 5 | id | ⊢ ( 𝐴 ⊆ 𝑌 → 𝐴 ⊆ 𝑌 ) | |
| 6 | filtop | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑌 ) → 𝑌 ∈ 𝐿 ) | |
| 7 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝑌 ∧ 𝑌 ∈ 𝐿 ) → 𝐴 ∈ V ) | |
| 8 | 5 6 7 | syl2anr | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 ∈ V ) |
| 9 | 6 | adantr | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝑌 ∈ 𝐿 ) |
| 10 | elrestr | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ∈ V ∧ 𝑌 ∈ 𝐿 ) → ( 𝑌 ∩ 𝐴 ) ∈ ( 𝐿 ↾t 𝐴 ) ) | |
| 11 | 4 8 9 10 | syl3anc | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( 𝑌 ∩ 𝐴 ) ∈ ( 𝐿 ↾t 𝐴 ) ) |
| 12 | 3 11 | eqeltrrd | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 ∈ ( 𝐿 ↾t 𝐴 ) ) |
| 13 | elssuni | ⊢ ( 𝐴 ∈ ( 𝐿 ↾t 𝐴 ) → 𝐴 ⊆ ∪ ( 𝐿 ↾t 𝐴 ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 ⊆ ∪ ( 𝐿 ↾t 𝐴 ) ) |
| 15 | restsspw | ⊢ ( 𝐿 ↾t 𝐴 ) ⊆ 𝒫 𝐴 | |
| 16 | sspwuni | ⊢ ( ( 𝐿 ↾t 𝐴 ) ⊆ 𝒫 𝐴 ↔ ∪ ( 𝐿 ↾t 𝐴 ) ⊆ 𝐴 ) | |
| 17 | 15 16 | mpbi | ⊢ ∪ ( 𝐿 ↾t 𝐴 ) ⊆ 𝐴 |
| 18 | 17 | a1i | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ∪ ( 𝐿 ↾t 𝐴 ) ⊆ 𝐴 ) |
| 19 | 14 18 | eqssd | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 = ∪ ( 𝐿 ↾t 𝐴 ) ) |