This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter is contained in some ultrafilter. This version of filssufil contains the choice as a hypothesis (in the assumption that ~P ~P X is well-orderable). (Contributed by Mario Carneiro, 24-May-2015) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | filssufilg | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝒫 𝒫 𝑋 ∈ dom card ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹 ⊆ 𝑓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝒫 𝒫 𝑋 ∈ dom card ) → 𝒫 𝒫 𝑋 ∈ dom card ) | |
| 2 | rabss | ⊢ ( { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ⊆ 𝒫 𝒫 𝑋 ↔ ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝑔 ∈ 𝒫 𝒫 𝑋 ) ) | |
| 3 | filsspw | ⊢ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) → 𝑔 ⊆ 𝒫 𝑋 ) | |
| 4 | velpw | ⊢ ( 𝑔 ∈ 𝒫 𝒫 𝑋 ↔ 𝑔 ⊆ 𝒫 𝑋 ) | |
| 5 | 3 4 | sylibr | ⊢ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) → 𝑔 ∈ 𝒫 𝒫 𝑋 ) |
| 6 | 5 | a1d | ⊢ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ⊆ 𝑔 → 𝑔 ∈ 𝒫 𝒫 𝑋 ) ) |
| 7 | 2 6 | mprgbir | ⊢ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ⊆ 𝒫 𝒫 𝑋 |
| 8 | ssnum | ⊢ ( ( 𝒫 𝒫 𝑋 ∈ dom card ∧ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ⊆ 𝒫 𝒫 𝑋 ) → { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∈ dom card ) | |
| 9 | 1 7 8 | sylancl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝒫 𝒫 𝑋 ∈ dom card ) → { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∈ dom card ) |
| 10 | ssid | ⊢ 𝐹 ⊆ 𝐹 | |
| 11 | 10 | jctr | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐹 ) ) |
| 12 | sseq2 | ⊢ ( 𝑔 = 𝐹 → ( 𝐹 ⊆ 𝑔 ↔ 𝐹 ⊆ 𝐹 ) ) | |
| 13 | 12 | elrab | ⊢ ( 𝐹 ∈ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐹 ) ) |
| 14 | 11 13 | sylibr | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ) |
| 15 | 14 | ne0d | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ≠ ∅ ) |
| 16 | 15 | adantr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝒫 𝒫 𝑋 ∈ dom card ) → { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ≠ ∅ ) |
| 17 | sseq2 | ⊢ ( 𝑔 = ∪ 𝑥 → ( 𝐹 ⊆ 𝑔 ↔ 𝐹 ⊆ ∪ 𝑥 ) ) | |
| 18 | simpr1 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ⊆ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∧ 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) → 𝑥 ⊆ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ) | |
| 19 | ssrab | ⊢ ( 𝑥 ⊆ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ↔ ( 𝑥 ⊆ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑔 ∈ 𝑥 𝐹 ⊆ 𝑔 ) ) | |
| 20 | 18 19 | sylib | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ⊆ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∧ 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) → ( 𝑥 ⊆ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑔 ∈ 𝑥 𝐹 ⊆ 𝑔 ) ) |
| 21 | 20 | simpld | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ⊆ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∧ 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) → 𝑥 ⊆ ( Fil ‘ 𝑋 ) ) |
| 22 | simpr2 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ⊆ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∧ 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) → 𝑥 ≠ ∅ ) | |
| 23 | simpr3 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ⊆ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∧ 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) → [⊊] Or 𝑥 ) | |
| 24 | sorpssun | ⊢ ( ( [⊊] Or 𝑥 ∧ ( 𝑔 ∈ 𝑥 ∧ ℎ ∈ 𝑥 ) ) → ( 𝑔 ∪ ℎ ) ∈ 𝑥 ) | |
| 25 | 24 | ralrimivva | ⊢ ( [⊊] Or 𝑥 → ∀ 𝑔 ∈ 𝑥 ∀ ℎ ∈ 𝑥 ( 𝑔 ∪ ℎ ) ∈ 𝑥 ) |
| 26 | 23 25 | syl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ⊆ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∧ 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) → ∀ 𝑔 ∈ 𝑥 ∀ ℎ ∈ 𝑥 ( 𝑔 ∪ ℎ ) ∈ 𝑥 ) |
| 27 | filuni | ⊢ ( ( 𝑥 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑥 ≠ ∅ ∧ ∀ 𝑔 ∈ 𝑥 ∀ ℎ ∈ 𝑥 ( 𝑔 ∪ ℎ ) ∈ 𝑥 ) → ∪ 𝑥 ∈ ( Fil ‘ 𝑋 ) ) | |
| 28 | 21 22 26 27 | syl3anc | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ⊆ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∧ 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) → ∪ 𝑥 ∈ ( Fil ‘ 𝑋 ) ) |
| 29 | n0 | ⊢ ( 𝑥 ≠ ∅ ↔ ∃ ℎ ℎ ∈ 𝑥 ) | |
| 30 | ssel2 | ⊢ ( ( 𝑥 ⊆ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∧ ℎ ∈ 𝑥 ) → ℎ ∈ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ) | |
| 31 | sseq2 | ⊢ ( 𝑔 = ℎ → ( 𝐹 ⊆ 𝑔 ↔ 𝐹 ⊆ ℎ ) ) | |
| 32 | 31 | elrab | ⊢ ( ℎ ∈ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ↔ ( ℎ ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ ℎ ) ) |
| 33 | 30 32 | sylib | ⊢ ( ( 𝑥 ⊆ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∧ ℎ ∈ 𝑥 ) → ( ℎ ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ ℎ ) ) |
| 34 | 33 | simprd | ⊢ ( ( 𝑥 ⊆ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∧ ℎ ∈ 𝑥 ) → 𝐹 ⊆ ℎ ) |
| 35 | ssuni | ⊢ ( ( 𝐹 ⊆ ℎ ∧ ℎ ∈ 𝑥 ) → 𝐹 ⊆ ∪ 𝑥 ) | |
| 36 | 34 35 | sylancom | ⊢ ( ( 𝑥 ⊆ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∧ ℎ ∈ 𝑥 ) → 𝐹 ⊆ ∪ 𝑥 ) |
| 37 | 36 | ex | ⊢ ( 𝑥 ⊆ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } → ( ℎ ∈ 𝑥 → 𝐹 ⊆ ∪ 𝑥 ) ) |
| 38 | 37 | exlimdv | ⊢ ( 𝑥 ⊆ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } → ( ∃ ℎ ℎ ∈ 𝑥 → 𝐹 ⊆ ∪ 𝑥 ) ) |
| 39 | 29 38 | biimtrid | ⊢ ( 𝑥 ⊆ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } → ( 𝑥 ≠ ∅ → 𝐹 ⊆ ∪ 𝑥 ) ) |
| 40 | 18 22 39 | sylc | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ⊆ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∧ 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) → 𝐹 ⊆ ∪ 𝑥 ) |
| 41 | 17 28 40 | elrabd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ⊆ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∧ 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) → ∪ 𝑥 ∈ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ) |
| 42 | 41 | ex | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑥 ⊆ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∧ 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ) ) |
| 43 | 42 | alrimiv | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∀ 𝑥 ( ( 𝑥 ⊆ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∧ 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ) ) |
| 44 | 43 | adantr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝒫 𝒫 𝑋 ∈ dom card ) → ∀ 𝑥 ( ( 𝑥 ⊆ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∧ 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ) ) |
| 45 | zornn0g | ⊢ ( ( { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∈ dom card ∧ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ≠ ∅ ∧ ∀ 𝑥 ( ( 𝑥 ⊆ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∧ 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ) ) → ∃ 𝑓 ∈ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∀ ℎ ∈ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ¬ 𝑓 ⊊ ℎ ) | |
| 46 | 9 16 44 45 | syl3anc | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝒫 𝒫 𝑋 ∈ dom card ) → ∃ 𝑓 ∈ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∀ ℎ ∈ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ¬ 𝑓 ⊊ ℎ ) |
| 47 | sseq2 | ⊢ ( 𝑔 = 𝑓 → ( 𝐹 ⊆ 𝑔 ↔ 𝐹 ⊆ 𝑓 ) ) | |
| 48 | 47 | elrab | ⊢ ( 𝑓 ∈ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ↔ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝑓 ) ) |
| 49 | 31 | ralrab | ⊢ ( ∀ ℎ ∈ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ¬ 𝑓 ⊊ ℎ ↔ ∀ ℎ ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ ) ) |
| 50 | simpll | ⊢ ( ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝑓 ) ∧ ∀ ℎ ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ ) ) → 𝑓 ∈ ( Fil ‘ 𝑋 ) ) | |
| 51 | sstr2 | ⊢ ( 𝐹 ⊆ 𝑓 → ( 𝑓 ⊆ ℎ → 𝐹 ⊆ ℎ ) ) | |
| 52 | 51 | imim1d | ⊢ ( 𝐹 ⊆ 𝑓 → ( ( 𝐹 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ ) → ( 𝑓 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ ) ) ) |
| 53 | df-pss | ⊢ ( 𝑓 ⊊ ℎ ↔ ( 𝑓 ⊆ ℎ ∧ 𝑓 ≠ ℎ ) ) | |
| 54 | 53 | simplbi2 | ⊢ ( 𝑓 ⊆ ℎ → ( 𝑓 ≠ ℎ → 𝑓 ⊊ ℎ ) ) |
| 55 | 54 | necon1bd | ⊢ ( 𝑓 ⊆ ℎ → ( ¬ 𝑓 ⊊ ℎ → 𝑓 = ℎ ) ) |
| 56 | 55 | a2i | ⊢ ( ( 𝑓 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ ) → ( 𝑓 ⊆ ℎ → 𝑓 = ℎ ) ) |
| 57 | 52 56 | syl6 | ⊢ ( 𝐹 ⊆ 𝑓 → ( ( 𝐹 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ ) → ( 𝑓 ⊆ ℎ → 𝑓 = ℎ ) ) ) |
| 58 | 57 | ralimdv | ⊢ ( 𝐹 ⊆ 𝑓 → ( ∀ ℎ ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ ) → ∀ ℎ ∈ ( Fil ‘ 𝑋 ) ( 𝑓 ⊆ ℎ → 𝑓 = ℎ ) ) ) |
| 59 | 58 | imp | ⊢ ( ( 𝐹 ⊆ 𝑓 ∧ ∀ ℎ ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ ) ) → ∀ ℎ ∈ ( Fil ‘ 𝑋 ) ( 𝑓 ⊆ ℎ → 𝑓 = ℎ ) ) |
| 60 | 59 | adantll | ⊢ ( ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝑓 ) ∧ ∀ ℎ ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ ) ) → ∀ ℎ ∈ ( Fil ‘ 𝑋 ) ( 𝑓 ⊆ ℎ → 𝑓 = ℎ ) ) |
| 61 | isufil2 | ⊢ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) ↔ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ ℎ ∈ ( Fil ‘ 𝑋 ) ( 𝑓 ⊆ ℎ → 𝑓 = ℎ ) ) ) | |
| 62 | 50 60 61 | sylanbrc | ⊢ ( ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝑓 ) ∧ ∀ ℎ ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ ) ) → 𝑓 ∈ ( UFil ‘ 𝑋 ) ) |
| 63 | simplr | ⊢ ( ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝑓 ) ∧ ∀ ℎ ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ ) ) → 𝐹 ⊆ 𝑓 ) | |
| 64 | 62 63 | jca | ⊢ ( ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝑓 ) ∧ ∀ ℎ ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ ) ) → ( 𝑓 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝑓 ) ) |
| 65 | 48 49 64 | syl2anb | ⊢ ( ( 𝑓 ∈ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∧ ∀ ℎ ∈ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ¬ 𝑓 ⊊ ℎ ) → ( 𝑓 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝑓 ) ) |
| 66 | 65 | reximi2 | ⊢ ( ∃ 𝑓 ∈ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ∀ ℎ ∈ { 𝑔 ∈ ( Fil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑔 } ¬ 𝑓 ⊊ ℎ → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹 ⊆ 𝑓 ) |
| 67 | 46 66 | syl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝒫 𝒫 𝑋 ∈ dom card ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹 ⊆ 𝑓 ) |