This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter is contained in some ultrafilter. This version of filssufil contains the choice as a hypothesis (in the assumption that ~P ~P X is well-orderable). (Contributed by Mario Carneiro, 24-May-2015) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | filssufilg | |- ( ( F e. ( Fil ` X ) /\ ~P ~P X e. dom card ) -> E. f e. ( UFil ` X ) F C_ f ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( F e. ( Fil ` X ) /\ ~P ~P X e. dom card ) -> ~P ~P X e. dom card ) |
|
| 2 | rabss | |- ( { g e. ( Fil ` X ) | F C_ g } C_ ~P ~P X <-> A. g e. ( Fil ` X ) ( F C_ g -> g e. ~P ~P X ) ) |
|
| 3 | filsspw | |- ( g e. ( Fil ` X ) -> g C_ ~P X ) |
|
| 4 | velpw | |- ( g e. ~P ~P X <-> g C_ ~P X ) |
|
| 5 | 3 4 | sylibr | |- ( g e. ( Fil ` X ) -> g e. ~P ~P X ) |
| 6 | 5 | a1d | |- ( g e. ( Fil ` X ) -> ( F C_ g -> g e. ~P ~P X ) ) |
| 7 | 2 6 | mprgbir | |- { g e. ( Fil ` X ) | F C_ g } C_ ~P ~P X |
| 8 | ssnum | |- ( ( ~P ~P X e. dom card /\ { g e. ( Fil ` X ) | F C_ g } C_ ~P ~P X ) -> { g e. ( Fil ` X ) | F C_ g } e. dom card ) |
|
| 9 | 1 7 8 | sylancl | |- ( ( F e. ( Fil ` X ) /\ ~P ~P X e. dom card ) -> { g e. ( Fil ` X ) | F C_ g } e. dom card ) |
| 10 | ssid | |- F C_ F |
|
| 11 | 10 | jctr | |- ( F e. ( Fil ` X ) -> ( F e. ( Fil ` X ) /\ F C_ F ) ) |
| 12 | sseq2 | |- ( g = F -> ( F C_ g <-> F C_ F ) ) |
|
| 13 | 12 | elrab | |- ( F e. { g e. ( Fil ` X ) | F C_ g } <-> ( F e. ( Fil ` X ) /\ F C_ F ) ) |
| 14 | 11 13 | sylibr | |- ( F e. ( Fil ` X ) -> F e. { g e. ( Fil ` X ) | F C_ g } ) |
| 15 | 14 | ne0d | |- ( F e. ( Fil ` X ) -> { g e. ( Fil ` X ) | F C_ g } =/= (/) ) |
| 16 | 15 | adantr | |- ( ( F e. ( Fil ` X ) /\ ~P ~P X e. dom card ) -> { g e. ( Fil ` X ) | F C_ g } =/= (/) ) |
| 17 | sseq2 | |- ( g = U. x -> ( F C_ g <-> F C_ U. x ) ) |
|
| 18 | simpr1 | |- ( ( F e. ( Fil ` X ) /\ ( x C_ { g e. ( Fil ` X ) | F C_ g } /\ x =/= (/) /\ [C.] Or x ) ) -> x C_ { g e. ( Fil ` X ) | F C_ g } ) |
|
| 19 | ssrab | |- ( x C_ { g e. ( Fil ` X ) | F C_ g } <-> ( x C_ ( Fil ` X ) /\ A. g e. x F C_ g ) ) |
|
| 20 | 18 19 | sylib | |- ( ( F e. ( Fil ` X ) /\ ( x C_ { g e. ( Fil ` X ) | F C_ g } /\ x =/= (/) /\ [C.] Or x ) ) -> ( x C_ ( Fil ` X ) /\ A. g e. x F C_ g ) ) |
| 21 | 20 | simpld | |- ( ( F e. ( Fil ` X ) /\ ( x C_ { g e. ( Fil ` X ) | F C_ g } /\ x =/= (/) /\ [C.] Or x ) ) -> x C_ ( Fil ` X ) ) |
| 22 | simpr2 | |- ( ( F e. ( Fil ` X ) /\ ( x C_ { g e. ( Fil ` X ) | F C_ g } /\ x =/= (/) /\ [C.] Or x ) ) -> x =/= (/) ) |
|
| 23 | simpr3 | |- ( ( F e. ( Fil ` X ) /\ ( x C_ { g e. ( Fil ` X ) | F C_ g } /\ x =/= (/) /\ [C.] Or x ) ) -> [C.] Or x ) |
|
| 24 | sorpssun | |- ( ( [C.] Or x /\ ( g e. x /\ h e. x ) ) -> ( g u. h ) e. x ) |
|
| 25 | 24 | ralrimivva | |- ( [C.] Or x -> A. g e. x A. h e. x ( g u. h ) e. x ) |
| 26 | 23 25 | syl | |- ( ( F e. ( Fil ` X ) /\ ( x C_ { g e. ( Fil ` X ) | F C_ g } /\ x =/= (/) /\ [C.] Or x ) ) -> A. g e. x A. h e. x ( g u. h ) e. x ) |
| 27 | filuni | |- ( ( x C_ ( Fil ` X ) /\ x =/= (/) /\ A. g e. x A. h e. x ( g u. h ) e. x ) -> U. x e. ( Fil ` X ) ) |
|
| 28 | 21 22 26 27 | syl3anc | |- ( ( F e. ( Fil ` X ) /\ ( x C_ { g e. ( Fil ` X ) | F C_ g } /\ x =/= (/) /\ [C.] Or x ) ) -> U. x e. ( Fil ` X ) ) |
| 29 | n0 | |- ( x =/= (/) <-> E. h h e. x ) |
|
| 30 | ssel2 | |- ( ( x C_ { g e. ( Fil ` X ) | F C_ g } /\ h e. x ) -> h e. { g e. ( Fil ` X ) | F C_ g } ) |
|
| 31 | sseq2 | |- ( g = h -> ( F C_ g <-> F C_ h ) ) |
|
| 32 | 31 | elrab | |- ( h e. { g e. ( Fil ` X ) | F C_ g } <-> ( h e. ( Fil ` X ) /\ F C_ h ) ) |
| 33 | 30 32 | sylib | |- ( ( x C_ { g e. ( Fil ` X ) | F C_ g } /\ h e. x ) -> ( h e. ( Fil ` X ) /\ F C_ h ) ) |
| 34 | 33 | simprd | |- ( ( x C_ { g e. ( Fil ` X ) | F C_ g } /\ h e. x ) -> F C_ h ) |
| 35 | ssuni | |- ( ( F C_ h /\ h e. x ) -> F C_ U. x ) |
|
| 36 | 34 35 | sylancom | |- ( ( x C_ { g e. ( Fil ` X ) | F C_ g } /\ h e. x ) -> F C_ U. x ) |
| 37 | 36 | ex | |- ( x C_ { g e. ( Fil ` X ) | F C_ g } -> ( h e. x -> F C_ U. x ) ) |
| 38 | 37 | exlimdv | |- ( x C_ { g e. ( Fil ` X ) | F C_ g } -> ( E. h h e. x -> F C_ U. x ) ) |
| 39 | 29 38 | biimtrid | |- ( x C_ { g e. ( Fil ` X ) | F C_ g } -> ( x =/= (/) -> F C_ U. x ) ) |
| 40 | 18 22 39 | sylc | |- ( ( F e. ( Fil ` X ) /\ ( x C_ { g e. ( Fil ` X ) | F C_ g } /\ x =/= (/) /\ [C.] Or x ) ) -> F C_ U. x ) |
| 41 | 17 28 40 | elrabd | |- ( ( F e. ( Fil ` X ) /\ ( x C_ { g e. ( Fil ` X ) | F C_ g } /\ x =/= (/) /\ [C.] Or x ) ) -> U. x e. { g e. ( Fil ` X ) | F C_ g } ) |
| 42 | 41 | ex | |- ( F e. ( Fil ` X ) -> ( ( x C_ { g e. ( Fil ` X ) | F C_ g } /\ x =/= (/) /\ [C.] Or x ) -> U. x e. { g e. ( Fil ` X ) | F C_ g } ) ) |
| 43 | 42 | alrimiv | |- ( F e. ( Fil ` X ) -> A. x ( ( x C_ { g e. ( Fil ` X ) | F C_ g } /\ x =/= (/) /\ [C.] Or x ) -> U. x e. { g e. ( Fil ` X ) | F C_ g } ) ) |
| 44 | 43 | adantr | |- ( ( F e. ( Fil ` X ) /\ ~P ~P X e. dom card ) -> A. x ( ( x C_ { g e. ( Fil ` X ) | F C_ g } /\ x =/= (/) /\ [C.] Or x ) -> U. x e. { g e. ( Fil ` X ) | F C_ g } ) ) |
| 45 | zornn0g | |- ( ( { g e. ( Fil ` X ) | F C_ g } e. dom card /\ { g e. ( Fil ` X ) | F C_ g } =/= (/) /\ A. x ( ( x C_ { g e. ( Fil ` X ) | F C_ g } /\ x =/= (/) /\ [C.] Or x ) -> U. x e. { g e. ( Fil ` X ) | F C_ g } ) ) -> E. f e. { g e. ( Fil ` X ) | F C_ g } A. h e. { g e. ( Fil ` X ) | F C_ g } -. f C. h ) |
|
| 46 | 9 16 44 45 | syl3anc | |- ( ( F e. ( Fil ` X ) /\ ~P ~P X e. dom card ) -> E. f e. { g e. ( Fil ` X ) | F C_ g } A. h e. { g e. ( Fil ` X ) | F C_ g } -. f C. h ) |
| 47 | sseq2 | |- ( g = f -> ( F C_ g <-> F C_ f ) ) |
|
| 48 | 47 | elrab | |- ( f e. { g e. ( Fil ` X ) | F C_ g } <-> ( f e. ( Fil ` X ) /\ F C_ f ) ) |
| 49 | 31 | ralrab | |- ( A. h e. { g e. ( Fil ` X ) | F C_ g } -. f C. h <-> A. h e. ( Fil ` X ) ( F C_ h -> -. f C. h ) ) |
| 50 | simpll | |- ( ( ( f e. ( Fil ` X ) /\ F C_ f ) /\ A. h e. ( Fil ` X ) ( F C_ h -> -. f C. h ) ) -> f e. ( Fil ` X ) ) |
|
| 51 | sstr2 | |- ( F C_ f -> ( f C_ h -> F C_ h ) ) |
|
| 52 | 51 | imim1d | |- ( F C_ f -> ( ( F C_ h -> -. f C. h ) -> ( f C_ h -> -. f C. h ) ) ) |
| 53 | df-pss | |- ( f C. h <-> ( f C_ h /\ f =/= h ) ) |
|
| 54 | 53 | simplbi2 | |- ( f C_ h -> ( f =/= h -> f C. h ) ) |
| 55 | 54 | necon1bd | |- ( f C_ h -> ( -. f C. h -> f = h ) ) |
| 56 | 55 | a2i | |- ( ( f C_ h -> -. f C. h ) -> ( f C_ h -> f = h ) ) |
| 57 | 52 56 | syl6 | |- ( F C_ f -> ( ( F C_ h -> -. f C. h ) -> ( f C_ h -> f = h ) ) ) |
| 58 | 57 | ralimdv | |- ( F C_ f -> ( A. h e. ( Fil ` X ) ( F C_ h -> -. f C. h ) -> A. h e. ( Fil ` X ) ( f C_ h -> f = h ) ) ) |
| 59 | 58 | imp | |- ( ( F C_ f /\ A. h e. ( Fil ` X ) ( F C_ h -> -. f C. h ) ) -> A. h e. ( Fil ` X ) ( f C_ h -> f = h ) ) |
| 60 | 59 | adantll | |- ( ( ( f e. ( Fil ` X ) /\ F C_ f ) /\ A. h e. ( Fil ` X ) ( F C_ h -> -. f C. h ) ) -> A. h e. ( Fil ` X ) ( f C_ h -> f = h ) ) |
| 61 | isufil2 | |- ( f e. ( UFil ` X ) <-> ( f e. ( Fil ` X ) /\ A. h e. ( Fil ` X ) ( f C_ h -> f = h ) ) ) |
|
| 62 | 50 60 61 | sylanbrc | |- ( ( ( f e. ( Fil ` X ) /\ F C_ f ) /\ A. h e. ( Fil ` X ) ( F C_ h -> -. f C. h ) ) -> f e. ( UFil ` X ) ) |
| 63 | simplr | |- ( ( ( f e. ( Fil ` X ) /\ F C_ f ) /\ A. h e. ( Fil ` X ) ( F C_ h -> -. f C. h ) ) -> F C_ f ) |
|
| 64 | 62 63 | jca | |- ( ( ( f e. ( Fil ` X ) /\ F C_ f ) /\ A. h e. ( Fil ` X ) ( F C_ h -> -. f C. h ) ) -> ( f e. ( UFil ` X ) /\ F C_ f ) ) |
| 65 | 48 49 64 | syl2anb | |- ( ( f e. { g e. ( Fil ` X ) | F C_ g } /\ A. h e. { g e. ( Fil ` X ) | F C_ g } -. f C. h ) -> ( f e. ( UFil ` X ) /\ F C_ f ) ) |
| 66 | 65 | reximi2 | |- ( E. f e. { g e. ( Fil ` X ) | F C_ g } A. h e. { g e. ( Fil ` X ) | F C_ g } -. f C. h -> E. f e. ( UFil ` X ) F C_ f ) |
| 67 | 46 66 | syl | |- ( ( F e. ( Fil ` X ) /\ ~P ~P X e. dom card ) -> E. f e. ( UFil ` X ) F C_ f ) |