This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter gives rise to a connected topology. (Contributed by Jeff Hankins, 6-Dec-2009) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | filconn | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∪ { ∅ } ) ∈ Conn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 2 | filunibas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) | |
| 3 | 2 | fveq2d | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( Fil ‘ ∪ 𝐹 ) = ( Fil ‘ 𝑋 ) ) |
| 4 | 1 3 | eleqtrrd | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ) |
| 5 | nss | ⊢ ( ¬ 𝑥 ⊆ { ∅ } ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) | |
| 6 | simpll | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ) | |
| 7 | ssel2 | ⊢ ( ( 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ) | |
| 8 | 7 | adantll | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 9 | elun | ⊢ ( 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ↔ ( 𝑦 ∈ 𝐹 ∨ 𝑦 ∈ { ∅ } ) ) | |
| 10 | 8 9 | sylib | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑦 ∈ 𝐹 ∨ 𝑦 ∈ { ∅ } ) ) |
| 11 | 10 | orcomd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑦 ∈ { ∅ } ∨ 𝑦 ∈ 𝐹 ) ) |
| 12 | 11 | ord | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ¬ 𝑦 ∈ { ∅ } → 𝑦 ∈ 𝐹 ) ) |
| 13 | 12 | impr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) → 𝑦 ∈ 𝐹 ) |
| 14 | uniss | ⊢ ( 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) → ∪ 𝑥 ⊆ ∪ ( 𝐹 ∪ { ∅ } ) ) | |
| 15 | 14 | ad2antlr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) → ∪ 𝑥 ⊆ ∪ ( 𝐹 ∪ { ∅ } ) ) |
| 16 | uniun | ⊢ ∪ ( 𝐹 ∪ { ∅ } ) = ( ∪ 𝐹 ∪ ∪ { ∅ } ) | |
| 17 | 0ex | ⊢ ∅ ∈ V | |
| 18 | 17 | unisn | ⊢ ∪ { ∅ } = ∅ |
| 19 | 18 | uneq2i | ⊢ ( ∪ 𝐹 ∪ ∪ { ∅ } ) = ( ∪ 𝐹 ∪ ∅ ) |
| 20 | un0 | ⊢ ( ∪ 𝐹 ∪ ∅ ) = ∪ 𝐹 | |
| 21 | 16 19 20 | 3eqtrri | ⊢ ∪ 𝐹 = ∪ ( 𝐹 ∪ { ∅ } ) |
| 22 | 15 21 | sseqtrrdi | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) → ∪ 𝑥 ⊆ ∪ 𝐹 ) |
| 23 | elssuni | ⊢ ( 𝑦 ∈ 𝑥 → 𝑦 ⊆ ∪ 𝑥 ) | |
| 24 | 23 | ad2antrl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) → 𝑦 ⊆ ∪ 𝑥 ) |
| 25 | filss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ ( 𝑦 ∈ 𝐹 ∧ ∪ 𝑥 ⊆ ∪ 𝐹 ∧ 𝑦 ⊆ ∪ 𝑥 ) ) → ∪ 𝑥 ∈ 𝐹 ) | |
| 26 | 6 13 22 24 25 | syl13anc | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) → ∪ 𝑥 ∈ 𝐹 ) |
| 27 | elun1 | ⊢ ( ∪ 𝑥 ∈ 𝐹 → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) | |
| 28 | 26 27 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 29 | 28 | ex | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) → ( ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) ) |
| 30 | 29 | exlimdv | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) → ( ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) ) |
| 31 | 5 30 | biimtrid | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) → ( ¬ 𝑥 ⊆ { ∅ } → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) ) |
| 32 | uni0b | ⊢ ( ∪ 𝑥 = ∅ ↔ 𝑥 ⊆ { ∅ } ) | |
| 33 | ssun2 | ⊢ { ∅ } ⊆ ( 𝐹 ∪ { ∅ } ) | |
| 34 | 17 | snid | ⊢ ∅ ∈ { ∅ } |
| 35 | 33 34 | sselii | ⊢ ∅ ∈ ( 𝐹 ∪ { ∅ } ) |
| 36 | eleq1 | ⊢ ( ∪ 𝑥 = ∅ → ( ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ↔ ∅ ∈ ( 𝐹 ∪ { ∅ } ) ) ) | |
| 37 | 35 36 | mpbiri | ⊢ ( ∪ 𝑥 = ∅ → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 38 | 32 37 | sylbir | ⊢ ( 𝑥 ⊆ { ∅ } → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 39 | 31 38 | pm2.61d2 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 40 | 39 | ex | ⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) ) |
| 41 | 40 | alrimiv | ⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ∀ 𝑥 ( 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) ) |
| 42 | filin | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) | |
| 43 | elun1 | ⊢ ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 → ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) | |
| 44 | 42 43 | syl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 45 | 44 | 3expa | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 46 | 45 | ralrimiva | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ 𝐹 ) → ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 47 | elsni | ⊢ ( 𝑦 ∈ { ∅ } → 𝑦 = ∅ ) | |
| 48 | ineq2 | ⊢ ( 𝑦 = ∅ → ( 𝑥 ∩ 𝑦 ) = ( 𝑥 ∩ ∅ ) ) | |
| 49 | in0 | ⊢ ( 𝑥 ∩ ∅ ) = ∅ | |
| 50 | 48 49 | eqtrdi | ⊢ ( 𝑦 = ∅ → ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 51 | 50 35 | eqeltrdi | ⊢ ( 𝑦 = ∅ → ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 52 | 47 51 | syl | ⊢ ( 𝑦 ∈ { ∅ } → ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 53 | 52 | rgen | ⊢ ∀ 𝑦 ∈ { ∅ } ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) |
| 54 | ralun | ⊢ ( ( ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ∧ ∀ 𝑦 ∈ { ∅ } ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) → ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) | |
| 55 | 46 53 54 | sylancl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ 𝐹 ) → ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 56 | 55 | ralrimiva | ⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 57 | elsni | ⊢ ( 𝑥 ∈ { ∅ } → 𝑥 = ∅ ) | |
| 58 | ineq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ∩ 𝑦 ) = ( ∅ ∩ 𝑦 ) ) | |
| 59 | 0in | ⊢ ( ∅ ∩ 𝑦 ) = ∅ | |
| 60 | 58 59 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 61 | 60 35 | eqeltrdi | ⊢ ( 𝑥 = ∅ → ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 62 | 61 | ralrimivw | ⊢ ( 𝑥 = ∅ → ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 63 | 57 62 | syl | ⊢ ( 𝑥 ∈ { ∅ } → ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 64 | 63 | rgen | ⊢ ∀ 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) |
| 65 | ralun | ⊢ ( ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ∧ ∀ 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) → ∀ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) | |
| 66 | 56 64 65 | sylancl | ⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ∀ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 67 | p0ex | ⊢ { ∅ } ∈ V | |
| 68 | unexg | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ { ∅ } ∈ V ) → ( 𝐹 ∪ { ∅ } ) ∈ V ) | |
| 69 | 67 68 | mpan2 | ⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( 𝐹 ∪ { ∅ } ) ∈ V ) |
| 70 | istopg | ⊢ ( ( 𝐹 ∪ { ∅ } ) ∈ V → ( ( 𝐹 ∪ { ∅ } ) ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) ∧ ∀ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) ) ) | |
| 71 | 69 70 | syl | ⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( ( 𝐹 ∪ { ∅ } ) ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) ∧ ∀ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) ) ) |
| 72 | 41 66 71 | mpbir2and | ⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( 𝐹 ∪ { ∅ } ) ∈ Top ) |
| 73 | 21 | cldopn | ⊢ ( 𝑥 ∈ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) → ( ∪ 𝐹 ∖ 𝑥 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 74 | elun | ⊢ ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ ( 𝐹 ∪ { ∅ } ) ↔ ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ 𝐹 ∨ ( ∪ 𝐹 ∖ 𝑥 ) ∈ { ∅ } ) ) | |
| 75 | 73 74 | sylib | ⊢ ( 𝑥 ∈ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) → ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ 𝐹 ∨ ( ∪ 𝐹 ∖ 𝑥 ) ∈ { ∅ } ) ) |
| 76 | elun | ⊢ ( 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ↔ ( 𝑥 ∈ 𝐹 ∨ 𝑥 ∈ { ∅ } ) ) | |
| 77 | filfbas | ⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → 𝐹 ∈ ( fBas ‘ ∪ 𝐹 ) ) | |
| 78 | fbncp | ⊢ ( ( 𝐹 ∈ ( fBas ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ 𝐹 ) → ¬ ( ∪ 𝐹 ∖ 𝑥 ) ∈ 𝐹 ) | |
| 79 | 77 78 | sylan | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ 𝐹 ) → ¬ ( ∪ 𝐹 ∖ 𝑥 ) ∈ 𝐹 ) |
| 80 | 79 | pm2.21d | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ 𝐹 ) → ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ 𝐹 → 𝑥 = ∅ ) ) |
| 81 | 80 | ex | ⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( 𝑥 ∈ 𝐹 → ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ 𝐹 → 𝑥 = ∅ ) ) ) |
| 82 | 57 | a1i13 | ⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( 𝑥 ∈ { ∅ } → ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ 𝐹 → 𝑥 = ∅ ) ) ) |
| 83 | 81 82 | jaod | ⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( ( 𝑥 ∈ 𝐹 ∨ 𝑥 ∈ { ∅ } ) → ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ 𝐹 → 𝑥 = ∅ ) ) ) |
| 84 | 76 83 | biimtrid | ⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) → ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ 𝐹 → 𝑥 = ∅ ) ) ) |
| 85 | 84 | imp | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) → ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ 𝐹 → 𝑥 = ∅ ) ) |
| 86 | elsni | ⊢ ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ { ∅ } → ( ∪ 𝐹 ∖ 𝑥 ) = ∅ ) | |
| 87 | elssuni | ⊢ ( 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) → 𝑥 ⊆ ∪ ( 𝐹 ∪ { ∅ } ) ) | |
| 88 | 87 21 | sseqtrrdi | ⊢ ( 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) → 𝑥 ⊆ ∪ 𝐹 ) |
| 89 | 88 | adantl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) → 𝑥 ⊆ ∪ 𝐹 ) |
| 90 | ssdif0 | ⊢ ( ∪ 𝐹 ⊆ 𝑥 ↔ ( ∪ 𝐹 ∖ 𝑥 ) = ∅ ) | |
| 91 | 90 | biimpri | ⊢ ( ( ∪ 𝐹 ∖ 𝑥 ) = ∅ → ∪ 𝐹 ⊆ 𝑥 ) |
| 92 | eqss | ⊢ ( 𝑥 = ∪ 𝐹 ↔ ( 𝑥 ⊆ ∪ 𝐹 ∧ ∪ 𝐹 ⊆ 𝑥 ) ) | |
| 93 | 92 | simplbi2 | ⊢ ( 𝑥 ⊆ ∪ 𝐹 → ( ∪ 𝐹 ⊆ 𝑥 → 𝑥 = ∪ 𝐹 ) ) |
| 94 | 89 91 93 | syl2im | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) → ( ( ∪ 𝐹 ∖ 𝑥 ) = ∅ → 𝑥 = ∪ 𝐹 ) ) |
| 95 | 86 94 | syl5 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) → ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ { ∅ } → 𝑥 = ∪ 𝐹 ) ) |
| 96 | 85 95 | orim12d | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) → ( ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ 𝐹 ∨ ( ∪ 𝐹 ∖ 𝑥 ) ∈ { ∅ } ) → ( 𝑥 = ∅ ∨ 𝑥 = ∪ 𝐹 ) ) ) |
| 97 | 75 96 | syl5 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) → ( 𝑥 ∈ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) → ( 𝑥 = ∅ ∨ 𝑥 = ∪ 𝐹 ) ) ) |
| 98 | 97 | expimpd | ⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( ( 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ∧ 𝑥 ∈ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) ) → ( 𝑥 = ∅ ∨ 𝑥 = ∪ 𝐹 ) ) ) |
| 99 | elin | ⊢ ( 𝑥 ∈ ( ( 𝐹 ∪ { ∅ } ) ∩ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) ) ↔ ( 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ∧ 𝑥 ∈ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) ) ) | |
| 100 | vex | ⊢ 𝑥 ∈ V | |
| 101 | 100 | elpr | ⊢ ( 𝑥 ∈ { ∅ , ∪ 𝐹 } ↔ ( 𝑥 = ∅ ∨ 𝑥 = ∪ 𝐹 ) ) |
| 102 | 98 99 101 | 3imtr4g | ⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( 𝑥 ∈ ( ( 𝐹 ∪ { ∅ } ) ∩ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) ) → 𝑥 ∈ { ∅ , ∪ 𝐹 } ) ) |
| 103 | 102 | ssrdv | ⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( ( 𝐹 ∪ { ∅ } ) ∩ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) ) ⊆ { ∅ , ∪ 𝐹 } ) |
| 104 | 21 | isconn2 | ⊢ ( ( 𝐹 ∪ { ∅ } ) ∈ Conn ↔ ( ( 𝐹 ∪ { ∅ } ) ∈ Top ∧ ( ( 𝐹 ∪ { ∅ } ) ∩ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) ) ⊆ { ∅ , ∪ 𝐹 } ) ) |
| 105 | 72 103 104 | sylanbrc | ⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( 𝐹 ∪ { ∅ } ) ∈ Conn ) |
| 106 | 4 105 | syl | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∪ { ∅ } ) ∈ Conn ) |