This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A necessary and sufficient condition for the union of two filter bases to also be a filter base. (Contributed by Mario Carneiro, 28-Nov-2013) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fbun | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝐹 ∪ 𝐺 ) ∈ ( fBas ‘ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun1 | ⊢ ( 𝑥 ∈ 𝐹 → 𝑥 ∈ ( 𝐹 ∪ 𝐺 ) ) | |
| 2 | elun2 | ⊢ ( 𝑦 ∈ 𝐺 → 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ) | |
| 3 | 1 2 | anim12i | ⊢ ( ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐺 ) → ( 𝑥 ∈ ( 𝐹 ∪ 𝐺 ) ∧ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ) ) |
| 4 | fbasssin | ⊢ ( ( ( 𝐹 ∪ 𝐺 ) ∈ ( fBas ‘ 𝑋 ) ∧ 𝑥 ∈ ( 𝐹 ∪ 𝐺 ) ∧ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ) → ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) | |
| 5 | 4 | 3expb | ⊢ ( ( ( 𝐹 ∪ 𝐺 ) ∈ ( fBas ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( 𝐹 ∪ 𝐺 ) ∧ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ) ) → ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 6 | 3 5 | sylan2 | ⊢ ( ( ( 𝐹 ∪ 𝐺 ) ∈ ( fBas ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐺 ) ) → ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 7 | 6 | ralrimivva | ⊢ ( ( 𝐹 ∪ 𝐺 ) ∈ ( fBas ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 8 | fbsspw | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ⊆ 𝒫 𝑋 ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 10 | fbsspw | ⊢ ( 𝐺 ∈ ( fBas ‘ 𝑋 ) → 𝐺 ⊆ 𝒫 𝑋 ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → 𝐺 ⊆ 𝒫 𝑋 ) |
| 12 | 9 11 | unssd | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝐹 ∪ 𝐺 ) ⊆ 𝒫 𝑋 ) |
| 13 | 12 | a1d | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ( 𝐹 ∪ 𝐺 ) ⊆ 𝒫 𝑋 ) ) |
| 14 | ssun1 | ⊢ 𝐹 ⊆ ( 𝐹 ∪ 𝐺 ) | |
| 15 | fbasne0 | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ≠ ∅ ) | |
| 16 | ssn0 | ⊢ ( ( 𝐹 ⊆ ( 𝐹 ∪ 𝐺 ) ∧ 𝐹 ≠ ∅ ) → ( 𝐹 ∪ 𝐺 ) ≠ ∅ ) | |
| 17 | 14 15 16 | sylancr | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐹 ∪ 𝐺 ) ≠ ∅ ) |
| 18 | 17 | adantr | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝐹 ∪ 𝐺 ) ≠ ∅ ) |
| 19 | 18 | a1d | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ( 𝐹 ∪ 𝐺 ) ≠ ∅ ) ) |
| 20 | 0nelfb | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ¬ ∅ ∈ 𝐹 ) | |
| 21 | 0nelfb | ⊢ ( 𝐺 ∈ ( fBas ‘ 𝑋 ) → ¬ ∅ ∈ 𝐺 ) | |
| 22 | df-nel | ⊢ ( ∅ ∉ ( 𝐹 ∪ 𝐺 ) ↔ ¬ ∅ ∈ ( 𝐹 ∪ 𝐺 ) ) | |
| 23 | elun | ⊢ ( ∅ ∈ ( 𝐹 ∪ 𝐺 ) ↔ ( ∅ ∈ 𝐹 ∨ ∅ ∈ 𝐺 ) ) | |
| 24 | 23 | notbii | ⊢ ( ¬ ∅ ∈ ( 𝐹 ∪ 𝐺 ) ↔ ¬ ( ∅ ∈ 𝐹 ∨ ∅ ∈ 𝐺 ) ) |
| 25 | ioran | ⊢ ( ¬ ( ∅ ∈ 𝐹 ∨ ∅ ∈ 𝐺 ) ↔ ( ¬ ∅ ∈ 𝐹 ∧ ¬ ∅ ∈ 𝐺 ) ) | |
| 26 | 22 24 25 | 3bitri | ⊢ ( ∅ ∉ ( 𝐹 ∪ 𝐺 ) ↔ ( ¬ ∅ ∈ 𝐹 ∧ ¬ ∅ ∈ 𝐺 ) ) |
| 27 | 26 | biimpri | ⊢ ( ( ¬ ∅ ∈ 𝐹 ∧ ¬ ∅ ∈ 𝐺 ) → ∅ ∉ ( 𝐹 ∪ 𝐺 ) ) |
| 28 | 20 21 27 | syl2an | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ∅ ∉ ( 𝐹 ∪ 𝐺 ) ) |
| 29 | 28 | a1d | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ∅ ∉ ( 𝐹 ∪ 𝐺 ) ) ) |
| 30 | fbasssin | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) | |
| 31 | ssrexv | ⊢ ( 𝐹 ⊆ ( 𝐹 ∪ 𝐺 ) → ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) | |
| 32 | 14 30 31 | mpsyl | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 33 | 32 | 3expb | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 34 | 33 | ralrimivva | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 35 | 34 | adantr | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 36 | pm3.2 | ⊢ ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) | |
| 37 | 35 36 | syl | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 38 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐹 ( ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) | |
| 39 | ralun | ⊢ ( ( ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) → ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) | |
| 40 | 39 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐹 ( ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 41 | 38 40 | sylbir | ⊢ ( ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 42 | 37 41 | syl6 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 43 | ralcom | ⊢ ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐺 ∀ 𝑥 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) | |
| 44 | ineq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∩ 𝑦 ) = ( 𝑤 ∩ 𝑦 ) ) | |
| 45 | 44 | sseq2d | ⊢ ( 𝑥 = 𝑤 → ( 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ↔ 𝑧 ⊆ ( 𝑤 ∩ 𝑦 ) ) ) |
| 46 | 45 | rexbidv | ⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ↔ ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑤 ∩ 𝑦 ) ) ) |
| 47 | 46 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ↔ ∀ 𝑤 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑤 ∩ 𝑦 ) ) |
| 48 | 47 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐺 ∀ 𝑥 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐺 ∀ 𝑤 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑤 ∩ 𝑦 ) ) |
| 49 | ineq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑤 ∩ 𝑦 ) = ( 𝑤 ∩ 𝑥 ) ) | |
| 50 | 49 | sseq2d | ⊢ ( 𝑦 = 𝑥 → ( 𝑧 ⊆ ( 𝑤 ∩ 𝑦 ) ↔ 𝑧 ⊆ ( 𝑤 ∩ 𝑥 ) ) ) |
| 51 | 50 | rexbidv | ⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑤 ∩ 𝑦 ) ↔ ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑤 ∩ 𝑥 ) ) ) |
| 52 | ineq1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∩ 𝑥 ) = ( 𝑦 ∩ 𝑥 ) ) | |
| 53 | incom | ⊢ ( 𝑦 ∩ 𝑥 ) = ( 𝑥 ∩ 𝑦 ) | |
| 54 | 52 53 | eqtrdi | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∩ 𝑥 ) = ( 𝑥 ∩ 𝑦 ) ) |
| 55 | 54 | sseq2d | ⊢ ( 𝑤 = 𝑦 → ( 𝑧 ⊆ ( 𝑤 ∩ 𝑥 ) ↔ 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 56 | 55 | rexbidv | ⊢ ( 𝑤 = 𝑦 → ( ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑤 ∩ 𝑥 ) ↔ ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 57 | 51 56 | cbvral2vw | ⊢ ( ∀ 𝑦 ∈ 𝐺 ∀ 𝑤 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑤 ∩ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 58 | 43 48 57 | 3bitri | ⊢ ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 59 | 58 | biimpi | ⊢ ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 60 | ssun2 | ⊢ 𝐺 ⊆ ( 𝐹 ∪ 𝐺 ) | |
| 61 | fbasssin | ⊢ ( ( 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺 ) → ∃ 𝑧 ∈ 𝐺 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) | |
| 62 | ssrexv | ⊢ ( 𝐺 ⊆ ( 𝐹 ∪ 𝐺 ) → ( ∃ 𝑧 ∈ 𝐺 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) | |
| 63 | 60 61 62 | mpsyl | ⊢ ( ( 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺 ) → ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 64 | 63 | 3expb | ⊢ ( ( 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺 ) ) → ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 65 | 64 | ralrimivva | ⊢ ( 𝐺 ∈ ( fBas ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 66 | 65 | adantl | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 67 | 59 66 | anim12i | ⊢ ( ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ) → ( ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 68 | 67 | expcom | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ( ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 69 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐺 ( ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) | |
| 70 | 39 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐺 ( ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) → ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 71 | 69 70 | sylbir | ⊢ ( ( ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) → ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 72 | 68 71 | syl6 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 73 | 42 72 | jcad | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 74 | ralun | ⊢ ( ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) → ∀ 𝑥 ∈ ( 𝐹 ∪ 𝐺 ) ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) | |
| 75 | 73 74 | syl6 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ∀ 𝑥 ∈ ( 𝐹 ∪ 𝐺 ) ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 76 | 19 29 75 | 3jcad | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ( ( 𝐹 ∪ 𝐺 ) ≠ ∅ ∧ ∅ ∉ ( 𝐹 ∪ 𝐺 ) ∧ ∀ 𝑥 ∈ ( 𝐹 ∪ 𝐺 ) ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 77 | 13 76 | jcad | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ( ( 𝐹 ∪ 𝐺 ) ⊆ 𝒫 𝑋 ∧ ( ( 𝐹 ∪ 𝐺 ) ≠ ∅ ∧ ∅ ∉ ( 𝐹 ∪ 𝐺 ) ∧ ∀ 𝑥 ∈ ( 𝐹 ∪ 𝐺 ) ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) |
| 78 | elfvdm | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝑋 ∈ dom fBas ) | |
| 79 | 78 | adantr | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → 𝑋 ∈ dom fBas ) |
| 80 | isfbas2 | ⊢ ( 𝑋 ∈ dom fBas → ( ( 𝐹 ∪ 𝐺 ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ 𝐺 ) ⊆ 𝒫 𝑋 ∧ ( ( 𝐹 ∪ 𝐺 ) ≠ ∅ ∧ ∅ ∉ ( 𝐹 ∪ 𝐺 ) ∧ ∀ 𝑥 ∈ ( 𝐹 ∪ 𝐺 ) ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) | |
| 81 | 79 80 | syl | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝐹 ∪ 𝐺 ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ 𝐺 ) ⊆ 𝒫 𝑋 ∧ ( ( 𝐹 ∪ 𝐺 ) ≠ ∅ ∧ ∅ ∉ ( 𝐹 ∪ 𝐺 ) ∧ ∀ 𝑥 ∈ ( 𝐹 ∪ 𝐺 ) ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) |
| 82 | 77 81 | sylibrd | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ( 𝐹 ∪ 𝐺 ) ∈ ( fBas ‘ 𝑋 ) ) ) |
| 83 | 7 82 | impbid2 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝐹 ∪ 𝐺 ) ∈ ( fBas ‘ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |